Craniocervical and Cervical Spine Features of Patients with Temporomandibular Disorders: A Systematic Review and Meta-Analysis of Observational Studies

Ferran Cuenca-Martínez, Aida Herranz-Gómez, Beatriz Madroñero-Miguel, Álvaro Reina-Varona, Roy La Touche, Santiago Angulo-Díaz-Parreño, Joaquín Pardo-Montero, Tamara Del Corral, Ibai López-de-Uralde-Villanueva, Ferran Cuenca-Martínez, Aida Herranz-Gómez, Beatriz Madroñero-Miguel, Álvaro Reina-Varona, Roy La Touche, Santiago Angulo-Díaz-Parreño, Joaquín Pardo-Montero, Tamara Del Corral, Ibai López-de-Uralde-Villanueva

Abstract

To assess neck disability with respect to jaw disability, craniocervical position, cervical alignment, and sensorimotor impairments in patients with temporomandibular disorders (TMD), a systematic review and meta-analysis of observational studies trials were conducted. The meta-analysis showed statistically significant differences in the association between neck disability and jaw disability (standardized mean difference (SMD), 0.72 (0.56-0.82)). However, results showed no significant differences for cervical alignment (SMD, 0.02 (-0.31-0.36)) or for the craniocervical position (SMD, -0.09 (-0.27-0.09)). There was moderate evidence for lower pressure pain thresholds (PPT) and for limited cervical range of motion (ROM). There was limited evidence for equal values for maximal strength between the patients with TMD and controls. There was also limited evidence for reduced cervical endurance and conflicting evidence for abnormal electromyographic (EMG) activity and motor control in TMD patients. Results showed a clinically relevant association between cervical and mandibular disability in patients with TMD. Regarding sensory-motor alterations, the most conclusive findings were observed in the reduction of PPT and cervical ROM, with moderate evidence of their presence in the patients with TMD. Lastly, the evidence on impaired motor control and cervical EMG activity in patients with TMD was conflicting.

Keywords: cervical spine; jaw disability; motor control; neck disability; sensory-motor variables; temporomandibular disorders.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure A1
Figure A1
Publication bias heterogeneity funnel plot for the association between cervical and mandibular disability. A funnel plot was used to assess the risk of publication bias. The diagonal lines represent 95% confidence limits.
Figure A2
Figure A2
Publication bias heterogeneity funnel plot for the craniocervical position. A funnel plot was used to assess the risk of publication bias. The diagonal lines represent 95% confidence limits.
Figure A3
Figure A3
Publication bias heterogeneity funnel plot for the cervical spine alignment. A funnel plot was used to assess the risk of publication bias. The diagonal lines represent 95% confidence limits.
Figure 1
Figure 1
PRISMA flow diagram.
Figure 2
Figure 2
Synthesis forest plot for the association between cervical and mandibular disability. SMD, standardized mean difference. This forest plot summarizes the results of six included studies (sample size, standardized mean differences (SMDs), and weight). The small boxes with the squares represent the point estimate of the effect size and sample size. The lines on either side of the box represent a 95% confidence interval (CI). The horizontal axis represents whether the quantitative analysis is for or against the association.
Figure 3
Figure 3
Synthesis forest plot for the craniocervical position. SMD, standardized mean difference. This forest plot summarizes the results of five included studies (sample size, standardized mean differences (SMDs), and weight). The small boxes with the squares represent the point estimate of the effect size and sample size. The lines on either side of the box represent a 95% confidence interval (CI). The horizontal axis represents whether the quantitative analysis is for or against the different craniocervical position in patients with TMD.
Figure 4
Figure 4
Synthesis forest plot for the cervical spine alignment. SMD, standardized mean difference. This forest plot summarizes the results of six included studies (sample size, standardized mean differences (SMDs), and weight). The small boxes with the squares represent the point estimate of the effect size and sample size. The lines on either side of the box represent a 95% confidence interval (CI). The horizontal axis represents whether the quantitative analysis is for or against the different cervical alignment in patients with TMD.

References

    1. McNeill C., Mohl N.D., Rugh J.D., Tanaka T.T. Temporomandibular disorders: Diagnosis, management, education, and research. J. Am. Dent. Assoc. 1990;120:253–263. doi: 10.14219/jada.archive.1990.0049.
    1. McNeill C. Management of temporomandibular disorders: Concepts and controversies. J. Prosthet. Dent. 1997;77:510–522. doi: 10.1016/S0022-3913(97)70145-8.
    1. LeResche L. Epidemiology of temporomandibular disorders: Implications for the investigation of etiologic factors. Crit. Rev. Oral Biol. Med. 1997;8:291–305. doi: 10.1177/10454411970080030401.
    1. Carlsson G.E. Epidemiology and Treatment Need for Temporomandibular Disorders. J. Orofac. Pain. 1999;13:232–237.
    1. Dimitroulis G. Fortnightly review. Temporomandibular disorders: A clinical update. Br. Med. J. 1998;317:190–194. doi: 10.1136/bmj.317.7152.190.
    1. Mense S. The pathogenesis of muscle pain. Curr. Pain Headache Rep. 2003;7:419–425. doi: 10.1007/s11916-003-0057-6.
    1. Truelove E.L., Sommers E.E., LeResche L., Dworkin S.F., Von Korff M. Clinical diagnostic criteria for TMD. New classification permits multiple diagnoses. J. Am. Dent. Assoc. 1992;123:47–54. doi: 10.14219/jada.archive.1992.0094.
    1. Manfredini D., Arveda N., Guarda-Nardini L., Segù M., Collesano V. Distribution of diagnoses in a population of patients with temporomandibular disorders. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012 doi: 10.1016/j.oooo.2012.03.023.
    1. Fink M., Tschernitschek H., Stiesch-Scholz M. Asymptomatic Cervical Spine Dysfunction (CSD) in Patients with Internal Derangement of the Temporomandibular Joint. Cranio. 2002;20:192–197. doi: 10.1080/08869634.2002.11746210.
    1. Al-Abbasi H., Mehta N.R., Forgione A.G., Clark R.E. The effect of vertical dimension and mandibular position on isometric strength of the cervical flexors. Cranio. 1999;17:85–92. doi: 10.1080/08869634.1999.11746082.
    1. La Touche R., Paris-Alemany A., Gil-Martínez A., Pardo-Montero J., Angulo-Díaz-Parreño S., Fernández-Carnero J. Masticatory sensory-motor changes after an experimental chewing test influenced by pain catastrophizing and neck-pain-related disability in patients with headache attributed to temporomandibular disorders. J. Headache Pain. 2015;16:20. doi: 10.1186/s10194-015-0500-1.
    1. Eriksson P.O., Häggman-Henrikson B., Nordh E., Zafar H. Co-ordinated mandibular and head-neck movements during rhythmic jaw activities in man. J. Dent. Res. 2000;79:1378–1384. doi: 10.1177/00220345000790060501.
    1. Bartsch T., Goadsby P.J. Increased responses in trigeminocervical nociceptive neurons to cervical input after stimulation of the dura mater. Brain. 2003;126:1801–1813. doi: 10.1093/brain/awg190.
    1. La Touche R., Paris-Alemany A., Hidalgo-Pérez A., López-de-Uralde-Villanueva I., Angulo-Diaz-Parreño S., Muñoz-García D. Evidence for Central Sensitization in Patients with Temporomandibular Disorders: A Systematic Review and Meta-analysis of Observational Studies. Pain Pract. 2018;18:388–409. doi: 10.1111/papr.12604.
    1. Olivo S.A., Bravo J., Magee D.J., Thie N.M.R., Major P.W., Flores-Mir C. The association between head and cervical posture and temporomandibular disorders: A systematic review. J. Orofac. Pain. 2006;20:9–23.
    1. Schiffman E., Ohrbach R., Truelove E., Look J., Anderson G., Goulet J.-P., List T., Svensson P., Gonzalez Y., Lobbezoo F., et al. Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) for Clinical and Research Applications: Recommendations of the International RDC/TMD Consortium Network* and Orofacial Pain Special Interest Group†. J. Oral Facial Pain Headache. 2014;28:6–27. doi: 10.11607/jop.1151.
    1. Manfredini D., Ahlberg J., Winocur E., Guarda-Nardini L., Lobbezoo F. Correlation of RDC/TMD axis I diagnoses and axis II pain-related disability. A multicenter study. Clin. Oral Investig. 2011;15:749–756. doi: 10.1007/s00784-010-0444-4.
    1. Ozdemir-Karatas M., Peker K., Balık A., Uysal O., Tuncer E.B. Identifying potential predictors of pain–related disability in Turkish patients with chronic temporomandibular disorder pain. J. Headache Pain. 2013;14:17. doi: 10.1186/1129-2377-14-17.
    1. Rener-Sitar K., John M.T., Pusalavidyasagar S.S., Bandyopadhyay D., Schiffman E.L. Sleep quality in temporomandibular disorder cases. Sleep Med. 2016;25:105–112. doi: 10.1016/j.sleep.2016.06.031.
    1. Moher D., Liberati A., Tetzlaff J., Altman D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2009;8:6.
    1. Furlan A.D., Pennick V., Bombardier C., van Tulder M. Updated method guidelines for systematic reviews in the Cochrane Back Review Group. Spine. 2009;34:1929–1941. doi: 10.1097/BRS.0b013e3181b1c99f.
    1. Deeks J.J., Dinnes J., D’Amico R., Sowden A.J., Sakarovitch C., Song F., Petticrew M., Altman D.G. Evaluating non-randomised intervention studies. Health Technol. Assess. 2003 doi: 10.3310/hta7270.
    1. Hootman J.M., Driban J.B., Sitler M.R., Harris K.P., Cattano N.M. Reliability and validity of three quality rating instruments for systematic reviews of observational studies. Res. Synth. Methods. 2011;2:110–118. doi: 10.1002/jrsm.41.
    1. Wells G., Tugwell P., O’Connell D., Welch V., Peterson J., Shea B., Losos M. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomized Studies in Meta-Analyses. Ottawa Health Research Institute; Ottawa, ON, Cananda: 2015.
    1. Fingleton C., Smart K., Moloney N., Fullen B.M., Doody C. Pain sensitization in people with knee osteoarthritis: A systematic review and meta-analysis. Osteoarthr. Cartil. 2015;23:1043–1056. doi: 10.1016/j.joca.2015.02.163.
    1. Cohen J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960;20:37–46. doi: 10.1177/001316446002000104.
    1. Bax L., Yu L.M., Ikeda N., Tsuruta H., Moons K.G.M. Development and validation of MIX: Comprehensive free software for meta-analysis of causal research data. BMC Med. Res. Methodol. 2006 doi: 10.1186/1471-2288-6-50.
    1. Lewis S., Clarke M. Forest plots: Trying to see the wood and the trees. Br. Med. J. 2001;322:1479–1480. doi: 10.1136/bmj.322.7300.1479.
    1. Hedges L.V. Estimation of effect size from a series of independent experiments. Psychol. Bull. 1982;92:490–499. doi: 10.1037/0033-2909.92.2.490.
    1. Cohen J. A power primer. Psychol. Bull. 1992;112:155–159. doi: 10.1037/0033-2909.112.1.155.
    1. Higgins J.P.T., Thompson S.G., Deeks J.J., Altman D.G. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–560. doi: 10.1136/bmj.327.7414.557.
    1. Huedo-Medina T.B., Sánchez-Meca J., Marín-Martínez F., Botella J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol. Methods. 2006;11:193–206. doi: 10.1037/1082-989X.11.2.193.
    1. DerSimonian R., Laird N. Meta-analysis in clinical trials. Control. Clin. Trials. 1986;7:177–188. doi: 10.1016/0197-2456(86)90046-2.
    1. Begg C.B., Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–1101. doi: 10.2307/2533446.
    1. Sterne J.A.C., Egger M. Funnel plots for detecting bias in meta-analysis: Guidelines on choice of axis. J. Clin. Epidemiol. 2001;54:1046–1055. doi: 10.1016/S0895-4356(01)00377-8.
    1. Armijo-Olivo S., Fuentes J., Major P.W., Warren S., Thie N.M.R., Magee D.J. The association between neck disability and jaw disability. J. Oral Rehabil. 2010;37:670–679. doi: 10.1111/j.1365-2842.2010.02098.x.
    1. Armijo-Olivo S.L., Fuentes J.P., Major P.W., Warren S., Thie N.M., Magee D.J. Is maximal strength of the cervical flexor muscles reduced in patients with temporomandibular disorders? Arch. Phys. Med. Rehabil. 2010;91:1236–1242. doi: 10.1016/j.apmr.2010.05.003.
    1. Armijo-Olivo S., Fuentes J.P., da Costa B.R., Major P.W., Warren S., Thie N.M.R., Magee D.J. Reduced endurance of the cervical flexor muscles in patients with concurrent temporomandibular disorders and neck disability. Man. Ther. 2010;15:586–592. doi: 10.1016/j.math.2010.07.001.
    1. Armijo-Olivo S., Silvestre R.A., Fuentes J.P., Da Costa B.R., Major P.W., Warren S., Thie N.M.R., Magee D.J. Patients with temporomandibular disorders have increased fatigability of the cervical extensor muscles. Clin. J. Pain. 2012;28:55–64. doi: 10.1097/AJP.0b013e31822019f2.
    1. Armijo-Olivo S., Silvestre R., Fuentes J., da Costa B.R., Gadotti I.C., Warren S., Major P.W., Thie N.M.R., Magee D.J. Electromyographic Activity of the Cervical Flexor Muscles in Patients With Temporomandibular Disorders While Performing the Craniocervical Flexion Test: A Cross-Sectional Study. Phys. Ther. 2011;91:1184–1197. doi: 10.2522/ptj.20100233.
    1. Armijo-Olivo S., Warren S., Fuentes J., Magee D.J. Clinical relevance vs. statistical significance: Using neck outcomes in patients with temporomandibular disorders as an example. Man. Ther. 2011;16:563–572. doi: 10.1016/j.math.2011.05.006.
    1. Bevilaqua-Grossi D., Chaves T.C., Oliveira A.S. Cervical Spine Signs and Symptoms: Perpetuating Rather Than Predisposing Factors. J. Appl. Oral Sci. 2007;15:259–264. doi: 10.1590/S1678-77572007000400004.
    1. Bragatto M.M., Bevilaqua-Grossi D., Regalo S.C.H., Sousa J.D., Chaves T.C. Associations among temporomandibular disorders, chronic neck pain and neck pain disability in computer office workers: A pilot study. J. Oral Rehabil. 2016;43:321–332. doi: 10.1111/joor.12377.
    1. Braun B.L. Postural differences between asymptomatic men and women and craniofacial pain patients. Arch. Phys. Med. Rehabil. 1991;72:653–656.
    1. Clark G.T., Green E.M., Dornan M.R., Flack V.F. Craniocervical dysfunction levels in a patient sample from a temporomandibular joint clinic. J. Am. Dent. Assoc. 1987;115:251–256. doi: 10.14219/jada.archive.1987.0231.
    1. Coskun Benlidayi I., Guzel R., Tatli U., Salimov F., Keceli O. The relationship between neck pain and cervical alignment in patients with temporomandibular disorders. Cranio J. Craniomandib. Pract. 2018;2151:1–6. doi: 10.1080/08869634.2018.1498181.
    1. Da Costa D.R.A., De Lima Ferreira A.P., Pereira T.A.B., Porporatti A.L., Conti P.C.R., Costa Y.M., Bonjardim L.R. Neck disability is associated with masticatory myofascial pain and regional muscle sensitivity. Arch. Oral Biol. 2015;60:745–752. doi: 10.1016/j.archoralbio.2015.02.009.
    1. De Farias Neto J.P., De Santana J.M., De Santana-Filho V.J., Quintans-Junior L.J., De Lima Ferreira A.P., Bonjardim L.R. Radiographic measurement of the cervical spine in patients with temporomandibular dysfunction. Arch. Oral Biol. 2010;55:670–678. doi: 10.1016/j.archoralbio.2010.06.002.
    1. De Laat A., Meuleman H., Stevens A., Verbeke G. Correlation between cervical spine and temporomandibular disorders. Clin. Oral Investig. 1998;2:54–57. doi: 10.1007/s007840050045.
    1. Ferreira M.P., Waisberg C.B., Conti P.C.R., Bevilaqua-Grossi D. Mobility of the upper cervical spine and muscle performance of the deep flexors in women with temporomandibular disorders. J. Oral Rehabil. 2019;46:1177–1184. doi: 10.1111/joor.12858.
    1. Gil-Martínez A., Grande-Alonso M., López-de-Uralde-Villanueva I., López-López A., Fernández-Carnero J., La Touche R. Chronic Temporomandibular Disorders: Disability, pain intensity and fear of movement. J. Headache Pain. 2016;17:103–112. doi: 10.1186/s10194-016-0690-1.
    1. Gil-Martínez A., Navarro-Fernández G., Mangas-Guijarro M.Á., Lara-Lara M., López-López A., Fernández-Carnero J., La Touche R. Comparison between chronic migraine and temporomandibular disorders in pain-related disability and fear-avoidance behaviors. Pain Med. 2017;18:2214–2223. doi: 10.1093/pm/pnx127.
    1. Greghi S., dos Santos Aguiar A., Bataglion C., Ferracini G., La Touche R., Chaves T. Brazilian Portuguese Version of the Craniofacial Pain and Disability Inventory: Cross-Cultural Reliability, Internal Consistency, and Construct and Structural Validity. J. Oral Facial Pain Headache. 2018;32:389–399. doi: 10.11607/ofph.2141.
    1. Grondin F., Hall T., Laurentjoye M., Ella B. Upper cervical range of motion is impaired in patients with temporomandibular disorders. Cranio J. Craniomandib. Pract. 2015;33:91–99. doi: 10.1179/0886963414Z.00000000053.
    1. Iunes D.H., Carvalho L.C.F., Oliveira A.S., Bevilaqua-Grossi D. Craniocervical posture analysis in patients with temporomandibular disorder. Rev. Bras. Fisioter. 2009;13:89–95. doi: 10.1590/S1413-35552009005000011.
    1. Lee W.Y., Okeson J.P., Lindroth J. The relationship between forward head posture and temporomandibular disorders. J. Orofac. Pain. 1995;9:161–167.
    1. López-De-Uralde-Villanueva I., Beltran-Alacreu H., Paris-Alemany A., Angulo-Díaz-Parreño S., Touche R. La Relationships between craniocervical posture and pain-related disability in patients with cervico-craniofacial pain. J. Pain Res. 2015;8:449–458.
    1. Monticone M., Rocca B., Abelli P., Tecco S., Geri T., Gherlone E.F., Luzzi D., Testa M. Cross-cultural adaptation, reliability and validity of the Italian version of the craniofacial pain and disability inventory in patients with chronic temporomandibular joint disorders. BMC Oral Health. 2019;19:244–253. doi: 10.1186/s12903-019-0927-x.
    1. Munhoz W.C., Marques A.P., de Siqueira J.T.T. Radiographic evaluation of cervical spine of subjects with temporomandibular joint internal disorder. Pesqui. Odontol. Bras. 2004;18:283–289.
    1. Pallegama R.W., Ranasinghe A.W., Weerasinghe V.S., Sitheeque M.A.M. Influence of masticatory muscle pain on electromyographic activities of cervical muscles in patients with myogenous temporomandibular disorders. J. Oral Rehabil. 2004;31:423–429. doi: 10.1111/j.1365-2842.2004.01266.x.
    1. Raya C.R., Plaza-Manzano G., Pecos-Martín D., Ferragut-Garcías A., Martín-Casas P., Gallego-Izquierdo T., Romero-Franco N. Role of upper cervical spine in temporomandibular disorders. J. Back Musculoskelet. Rehabil. 2017;30:1245–1250. doi: 10.3233/BMR-169620.
    1. Silveira A., Gadotti I.C., Armijo-Olivo S., Biasotto-Gonzalez D.A., Magee D. Jaw Dysfunction Is Associated with Neck Disability and Muscle Tenderness in Subjects with and without Chronic Temporomandibular Disorders. Biomed. Res. Int. 2015;2015:1–7. doi: 10.1155/2015/512792.
    1. Silveira A., Armijo-Olivo S., Gadotti I.C., Magee D. Masticatory and Cervical Muscle Tenderness and Pain Sensitivity in a Remote Area in Subjects with a Temporomandibular Disorder and Neck Disability. J. Oral Facial Pain Headache. 2014;28:138–146. doi: 10.11607/ofph.1112.
    1. Thorp J., Willson J. The Neck Disability Index is Not Correlated with Some Parameters of Temporomandibular Disorders: A Cross-Sectional Study. J. Oral Facial Pain Headache. 2019;33:39–46. doi: 10.11607/ofph.1992.
    1. Uritani D., Kawakami T., Inoue T., Kirita T. Characteristics of upper quadrant posture of young women with temporomandibular disorders. J. Phys. Ther. Sci. 2014;26:1469–1472. doi: 10.1589/jpts.26.1469.
    1. Visscher C.M., De Boer W., Lobbezoo F., Habets L.L.M.H., Naeije M. Is there a relationship between head posture and craniomandibular pain? J. Oral Rehabil. 2002;29:1030–1036. doi: 10.1046/j.1365-2842.2002.00998.x.
    1. Von Piekartz H., Pudelko A., Danzeisen M., Hall T., Ballenberger N. Do subjects with acute/subacute temporomandibular disorder have associated cervical impairments: A cross-sectional study. Man. Ther. 2016;26:208–215. doi: 10.1016/j.math.2016.09.001.
    1. Wiesinger B., Malker H., Englund E., Wänman A. Does a dose-response relation exist between spinal pain and temporomandibular disorders? BMC Musculoskelet. Disord. 2009;10:28. doi: 10.1186/1471-2474-10-28.
    1. Kraus S. Temporomandibular Disorders, Head and Orofacial Pain: Cervical Spine Considerations. Dent. Clin. North. Am. 2007;51:161–193. doi: 10.1016/j.cden.2006.10.001.
    1. Sessle B.J. Acute and Chronic Craniofacial Pain: Brainstem Mechanisms of Nociceptive Transmission and Neuroplasticity, and Their Clinical Correlates. Crit. Rev. Oral Biol. Med. 2000;11:57–91. doi: 10.1177/10454411000110010401.
    1. Giannakopoulos N.N., Schindler H.J., Rammelsberg P., Eberhard L., Schmitter M., Hellmann D. Co-activation of jaw and neck muscles during submaximum clenching in the supine position. Arch. Oral Biol. 2013;58:1751–1760. doi: 10.1016/j.archoralbio.2013.09.002.
    1. Vernon H., Sun K., Zhang Y., Yu X.-M., Sessle B.J. Central sensitization induced in trigeminal and upper cervical dorsal horn neurons by noxious stimulation of deep cervical paraspinal tissues in rats with minimal surgical trauma. J. Manip. Physiol. Ther. 2009;32:506–514. doi: 10.1016/j.jmpt.2009.08.012.
    1. Favia G., Corsalini M., Di Venere D., Pettini F., Favia G., Capodiferro S., Maiorano E. Immunohistochemical evaluation of neuroreceptors in healthy and pathological temporo-mandibular joint. Int. J. Med. Sci. 2013;10:1698–1701. doi: 10.7150/ijms.6315.
    1. Rocha C.P., Croci C.S., Caria P.H.F. Is there relationship between temporomandibular disorders and head and cervical posture? A systematic review. J. Oral Rehabil. 2013;40:875–881. doi: 10.1111/joor.12104.
    1. Sedgwick P., Greenwood N. Understanding the Hawthorne effect. BMJ. 2015;351:h4672. doi: 10.1136/bmj.h4672.
    1. Falla D., Jull G., Russell T., Vicenzino B., Hodges P. Effect of neck exercise on sitting posture in patients with chronic neck pain. Phys. Ther. 2007;87:408–417. doi: 10.2522/ptj.20060009.
    1. Sessle B.J., Hu J.W., Amano N., Zhong G. Convergence of cutaneous, tooth pulp, visceral, neck and muscle afferents onto nociceptive and non-nociceptive neurones in trigeminal subnucleus caudalis (medullary dorsal horn) and its implications for referred pain. Pain. 1986;27:219–235. doi: 10.1016/0304-3959(86)90213-7.
    1. Browne P.A., Clark G.T., Kuboki T., Adachi N.Y. Concurrent cervical and craniofacial pain. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 1998;86:633–640. doi: 10.1016/S1079-2104(98)90195-0.
    1. De Rossi S.S. Orofacial Pain. Dent. Clin. N. Am. 2013;57:383–392. doi: 10.1016/j.cden.2013.04.001.
    1. Foreman P.A. Chronic orofacial pain: A clinical challenge. N. Z. Dent. J. 2008;104:44–48.
    1. Kotiranta U., Forssell H., Kauppila T. Painful temporomandibular disorders (TMD) and comorbidities in primary care: Associations with pain-related disability. Acta Odontol. Scand. 2019;77:22–27. doi: 10.1080/00016357.2018.1493219.
    1. Forssell H., Kauko T., Kotiranta U., Suvinen T. Predictors for future clinically significant pain in patients with temporomandibular disorder: A prospective cohort study. Eur. J. Pain. 2017;21:188–197. doi: 10.1002/ejp.916.
    1. Chantaracherd P., John M.T., Hodges J.S., Schiffman E.L. Temporomandibular Joint Disorders’ Impact on Pain, Function, and Disability. J. Dent. Res. 2015;94:79S–86S. doi: 10.1177/0022034514565793.
    1. Lira M.R., Lemes da Silva R.R., Bataglion C., dos Santos Aguiar A., Greghi S.M., Chaves T.C. Multiple diagnoses, increased kinesiophobia?—Patients with high kinesiophobia levels showed a greater number of temporomandibular disorder diagnoses. Musculoskelet. Sci. Pract. 2019;44:102054. doi: 10.1016/j.msksp.2019.102054.
    1. Lorduy K.M., Liegey-Dougall A., Haggard R., Sanders C.N., Gatchel R.J. The Prevalence of Comorbid Symptoms of Central Sensitization Syndrome Among Three Different Groups of Temporomandibular Disorder Patients. Pain Pract. 2013;13:604–613. doi: 10.1111/papr.12029.
    1. Greenspan J.D., Slade G.D., Bair E., Dubner R., Fillingim R.B., Manuscript A., Findings C., Identified E. Pain Sensitivity Risk Factors for Chronic TMD: Descriptive Data and Empirically Identified Domains from the OPPERA Case Control Study. J. Pain. 2011;12:T61–T74. doi: 10.1016/j.jpain.2011.08.006.
    1. Campi L.B., Jordani P.C., Tenan H.L., Camparis C.M., Gonçalves D.A.G. Painful temporomandibular disorders and central sensitization: Implications for management—A pilot study. Int. J. Oral Maxillofac. Surg. 2017;46:104–110. doi: 10.1016/j.ijom.2016.07.005.
    1. Younger J.W., Shen Y.F., Goddard G., Mackey S.C. Chronic myofascial temporomandibular pain is associated with neural abnormalities in the trigeminal and limbic systems. Pain. 2010;149:222–228. doi: 10.1016/j.pain.2010.01.006.
    1. Do Nascimento G.C., Leite-Panissi C.R.A. Time-dependent analysis of nociception and anxiety-like behavior in rats submitted to persistent inflammation of the temporomandibular joint. Physiol. Behav. 2014;125:1–7. doi: 10.1016/j.physbeh.2013.11.009.
    1. De La Torre Canales G., Câmara-Souza M.B., Muñoz Lora V.R.M., Guarda-Nardini L., Conti P.C.R., Rodrigues Garcia R.M., Del Bel Cury A.A., Manfredini D. Prevalence of psychosocial impairment in temporomandibular disorder patients: A systematic review. J. Oral Rehabil. 2018;45:881–889. doi: 10.1111/joor.12685.
    1. Ballenberger N., von Piekartz H., Paris-Alemany A., La Touche R., Angulo-Diaz-Parreño S. Influence of different upper cervical positions on electromyography activity of the masticatory muscles. J. Manipulative Physiol. Ther. 2012;35:308–318. doi: 10.1016/j.jmpt.2012.04.020.
    1. Tecco S., Tete S., Festa F. Relation between cervical posture on lateral skull radiographs and electromyographic activity of masticatory muscles in caucasian adult women: A cross-sectional study. J. Oral Rehabil. 2007;34:652–662. doi: 10.1111/j.1365-2842.2007.01775.x.
    1. Yoo And I.-G., Yoo W.-G. Changes in the cervical FRR, shoulder muscle pain and position after continuous detailed assembly work. Work. 2014;49:735–739. doi: 10.3233/WOR-131717.
    1. Ge H.-Y., Fernández-de-las-Peñas C., Yue S.-W. Myofascial trigger points: Spontaneous electrical activity and its consequences for pain induction and propagation. Chin. Med. 2011;6:13. doi: 10.1186/1749-8546-6-13.
    1. Farina D., Arendt-Nielsen L., Merletti R., Graven-Nielsen T. Effect of experimental muscle pain on motor unit firing rate and conduction velocity. J. Neurophysiol. 2004;91:1250–1259. doi: 10.1152/jn.00620.2003.
    1. Svensson P., Wang K., Sessle B.J., Arendt-Nielsen L. Associations between pain and neuromuscular activity in the human jaw and neck muscles. Pain. 2004;109:225–232. doi: 10.1016/j.pain.2003.12.031.
    1. Kobayashi M., Yabushita T., Zeredo J.L., Toda K., Soma K. Splenius muscle activities induced by temporomandibular joint stimulation in rats. Brain Res. Bull. 2007;72:44–48. doi: 10.1016/j.brainresbull.2006.10.031.
    1. Sterling M., Jull G., Wright A. The effect of musculoskeletal pain on motor activity and control. J. Pain. 2001;2:135–145. doi: 10.1054/jpai.2001.19951.
    1. Di Lazzaro V., Guney F., Akpinar Z., Yürüten B., Oliviero A., Pilato F., Saturno E., Dileone M., Tonali P.A., Rothwell J.C. Trigemino-cervical reflexes: Clinical applications and neuroradiological correlations. Suppl. Clin. Neurophysiol. 2006;58:110–119.
    1. Hellström F., Thunberg J., Bergenheim M., Sjölander P., Djupsjöbacka M., Johansson H. Increased intra-articular concentration of bradykinin in the temporomandibular joint changes the sensitivity of muscle spindles in dorsal neck muscles in the cat. Neurosci. Res. 2002;42:91–99. doi: 10.1016/S0168-0102(01)00307-8.
    1. Hellström F., Thunberg J., Bergenheim M., Sjölander P., Pedersen J., Johansson H. Elevated intramuscular concentration of bradykinin in jaw muscle increases the fusimotor drive to neck muscles in the cat. J. Dent. Res. 2000;79:1815–1822. doi: 10.1177/00220345000790101401.
    1. Kobayashi H. Reflex responses of sternocleidomastoid muscle induced by mechanical stimulation of upper anterior tooth and forehead. Kokubyo Gakkai Zasshi. 1990;57:385–392. doi: 10.5357/koubyou.57.385.
    1. Minerbi A., Vulfsons S. Challenging the Cinderella Hypothesis: A New Model for the Role of the Motor Unit Recruitment Pattern in the Pathogenesis of Myofascial Pain Syndrome in Postural Muscles. Rambam Maimonides Med. J. 2018;9:e0021. doi: 10.5041/RMMJ.10336.
    1. Kadefors R., Forsman M., Zoéga B., Herberts P. Recruitment of low threshold motor-units in the trapezius muscle in different static arm positions. Ergonomics. 1999;42:359–375. doi: 10.1080/001401399185711.
    1. Schulte E., Miltner O., Junker E., Rau G., Disselhorst-Klug C. Upper trapezius muscle conduction velocity during fatigue in subjects with and without work-related muscular disorders: A non-invasive high spatial resolution approach. Eur. J. Appl. Physiol. 2006;96:194–202. doi: 10.1007/s00421-004-1182-6.
    1. Kallenberg L.A.C., Schulte E., Disselhorst-Klug C., Hermens H.J. Myoelectric manifestations of fatigue at low contraction levels in subjects with and without chronic pain. J. Electromyogr. Kinesiol. 2007;17:264–274. doi: 10.1016/j.jelekin.2006.04.004.
    1. Armstrong T.J., Buckle P., Fine L.J., Hagberg M., Jonsson B., Kilbom A., Kuorinka I.A., Silverstein B.A., Sjogaard G., Viikari-Juntura E.R. A conceptual model for work-related neck and upper-limb musculoskeletal disorders. Scand. J. Work. Environ. Health. 1993;19:73–84. doi: 10.5271/sjweh.1494.
    1. Staal J.B., de Bie R.A., Hendriks E.J.M. Aetiology and management of work-related upper extremity disorders. Best Pract. Res. Clin. Rheumatol. 2007;21:123–133. doi: 10.1016/j.berh.2006.09.001.

Source: PubMed

3
Abonnere