Correlations between mitochondrial DNA haplogroup D5 and chronic hepatitis B virus infection in Yunnan, China

Xiao Li, Tai-Cheng Zhou, Chang-Hui Wu, Li-Lin Tao, Rui Bi, Li-Jun Chen, De-Yao Deng, Chang Liu, Newton O Otecko, Yang Tang, Xin Lai, Liang Zhang, Jia Wei, Xiao Li, Tai-Cheng Zhou, Chang-Hui Wu, Li-Lin Tao, Rui Bi, Li-Jun Chen, De-Yao Deng, Chang Liu, Newton O Otecko, Yang Tang, Xin Lai, Liang Zhang, Jia Wei

Abstract

Mitochondrial abnormality is frequently reported in individuals with hepatitis B virus (HBV) infection, but the associated hosts' mitochondrial genetic factors remain obscure. We hypothesized that mitochondria may affect host susceptibility to HBV infection. In this study, we aimed to detect the association between chronic HBV infection and mitochondrial DNA in Chinese from Yunnan, Southwest China. A total of 272 individuals with chronic HBV infection (CHB), 310 who had never been infected by HBV (healthy controls, HC) and 278 with a trace of HBV infection (spontaneously recovered, SR) were analysed for mtDNA sequence variations and classified into respective haplogroups. Haplogroup frequencies were compared between HBV infected patients, HCs and SRs. Haplogroup D5 presented a higher frequency in CHBs than in HCs (P = 0.017, OR = 2.87, 95% confidence interval [CI] = (1.21-6.81)) and SRs (P = 0.049, OR = 2.90, 95% CI = 1.01-8.35). The network of haplogroup D5 revealed a distinct distribution pattern between CHBs and non-CHBs. A trend of higher viral load among CHBs with haplogroup D5 was observed. Our results indicate the risk potential of mtDNA haplogroup D5 in chronic HBV infection in Yunnan, China.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Figure 1
Figure 1
Principal component analysis of CHBs, SRs and HCs from Yunnan province in Southwest China and the previously reported Han Chinese populations across China. (a) PC map of Han regional populations based on mtDNA haplogroup frequencies. Sample sets in this study were marked by solid triangles. The reported Han Chinese populations (data shown in Supplementary Table S3) were marked by hollow circles. The abbreviations of Han regional populations were the same with those in Supplementary Table S3. (b) Plot of mtDNA haplogroup contribution to the first and second PCs. Abbreviations: PC, principal component.
Figure 2
Figure 2
Network of haplogroup D5 in CHBs and combined controls consists of SRs and HCs. The variant order of the mtDNA control region is arbitrary on the branch. Each circle represents a kind of mtDNA haplogroup. The area of each circle is proportional to the haplogroup frequency. Sample sizes of the smallest and the largest sub-lineages were labeled in the corresponding circles. Length mutation of C-tract in region 16184–16193 was not considered during the network construction. The asterisks denote ancestral nodes of haplogroup D5.
Figure 3
Figure 3
Viral load of serum HBV-DNA in CHBs belonging to haplogroup D5 and non-D5. We divided the viral load into five categories arbitrarily. The horizontal axis represents the viral load of serum HBV-DNA. The vertical axis represents the proportion of participants whose viral load falls in the respective viral load categories among CHBs with D5 or other haplogroup backgrounds.
Figure 4
Figure 4
Clinical parameters of liver function in CHBs belonging to haplogroup D5 and non-D5. Serum levels of ALT (alanine transaminase), AST (aspartate aminotransferase), TBIL (total bilirubin), DBIL (direct bilirubin), TP (total protein) and ALB (albumin) were compared between D5 and non-D5 haplogroup members. Horizontal lines across the plots mark the mean expression level. Asterisk indicates significant difference (P < 0.05).

References

    1. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet385, 117–171 (2015).
    1. Lee WM. Hepatitis B virus infection. N. Engl. J. Med. 1997;337:1733–1745. doi: 10.1056/NEJM199712113372406.
    1. Thursz MR, Thomas HC. Host factors in chronic viral hepatitis. Semin. Liver Dis. 1997;17:345–350. doi: 10.1055/s-2007-1007211.
    1. Moudi B, Heidari Z, Mahmoudzadeh-Sagheb H. Impact of host gene polymorphisms on susceptibility to chronic hepatitis B virus infection. Infect. Genet. Evol. 2016;44:94–105. doi: 10.1016/j.meegid.2016.06.043.
    1. Heidari Z, Moudi B, Mahmoudzadeh-Sagheb H, Hashemi M. The Correlation Between Interferon Lambda 3 Gene Polymorphisms and Susceptibility to Hepatitis B Virus Infection. Hepat. Mon. 2016;16:e34266.
    1. Wan Z, et al. Genetic variant in CXCL13 gene is associated with susceptibility to intrauterine infection of hepatitis B virus. Sci. Rep. 2016;6:26465. doi: 10.1038/srep26465.
    1. Moudi B, et al. Association Between IL-10 Gene Promoter Polymorphisms (−592 A/C, −819 T/C, −1082 A/G) and Susceptibility to HBV Infection in an Iranian Population. Hepat. Mon. 2016;16:e32427. doi: 10.5812/hepatmon.32427.
    1. Huang J, et al. Association between the HLA-DQB1 polymorphisms and the susceptibility of chronic hepatitis B: A comprehensive meta-analysis. Biomed. Rep. 2016;4:557–566. doi: 10.3892/br.2016.632.
    1. Li Y, et al. Genome-wide association study identifies 8p21.3 associated with persistent hepatitis B virus infection among Chinese. Nat. Commun. 2016;7:11664. doi: 10.1038/ncomms11664.
    1. Zhu M, et al. Fine mapping the MHC region identified four independent variants modifying susceptibility to chronic hepatitis B in Han Chinese. Hum. Mol. Genet. 2016;25:1225–1232. doi: 10.1093/hmg/ddw003.
    1. Kim YJ, et al. A genome-wide association study identified new variants associated with the risk of chronic hepatitis B. Hum. Mol. Genet. 2013;22:4233–4238. doi: 10.1093/hmg/ddt266.
    1. Mbarek H, et al. A genome-wide association study of chronic hepatitis B identified novel risk locus in a Japanese population. Hum. Mol. Genet. 2011;20:3884–3892. doi: 10.1093/hmg/ddr301.
    1. Anderson S, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290:457–465. doi: 10.1038/290457a0.
    1. Hajnoczky G, Robb-Gaspers LD, Seitz MB, Thomas AP. Decoding of cytosolic calcium oscillations in the mitochondria. Cell. 1995;82:415–424. doi: 10.1016/0092-8674(95)90430-1.
    1. Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998;281:1309–1312. doi: 10.1126/science.281.5381.1309.
    1. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am. J. Physiol. Cell Physiol. 2004;287:C817–833. doi: 10.1152/ajpcell.00139.2004.
    1. Dröge W, Schipper HM. Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell. 2007;6:361–370. doi: 10.1111/j.1474-9726.2007.00294.x.
    1. Pieczenik SR, Neustadt J. Mitochondrial dysfunction and molecular pathways of disease. Exp. Mol. Pathol. 2007;83:84–92. doi: 10.1016/j.yexmp.2006.09.008.
    1. Wang D, et al. Mitochondrial DNA copy number, but not haplogroup, confers a genetic susceptibility to leprosy in Han Chinese from Southwest China. PLoS One. 2012;7:e38848. doi: 10.1371/journal.pone.0038848.
    1. Zhang AM, et al. Mitochondrial DNAs decreased and correlated with clinical features in HCV patients from Yunnan, China. Mitochondrial DNA A DNA Mapp. Seq. Anal. 2016;27:2516–2519.
    1. Spandau DF, Lee CH. trans-activation of viral enhancers by the hepatitis B virus X protein. J. Virol. 1988;62:427–434.
    1. Zhang SM, et al. HBx protein of hepatitis B virus (HBV) can form complex with mitochondrial HSP60 and HSP70. Arch. Virol. 2005;150:1579–1590. doi: 10.1007/s00705-005-0521-1.
    1. Siddiqui A, Jameel S, Mapoles J. Expression of the hepatitis B virus X gene in mammalian cells. Proc. Natl. Acad. Sci. USA. 1987;84:2513–2517. doi: 10.1073/pnas.84.8.2513.
    1. Rahmani Z, Huh KW, Lasher R, Siddiqui A. Hepatitis B virus X protein colocalizes to mitochondria with a human voltage-dependent anion channel, HVDAC3, and alters its transmembrane potential. J. Virol. 2000;74:2840–2846. doi: 10.1128/JVI.74.6.2840-2846.2000.
    1. Yang B, Bouchard MJ. The hepatitis B virus X protein elevates cytosolic calcium signals by modulating mitochondrial calcium uptake. J. Virol. 2012;86:313–327. doi: 10.1128/JVI.06442-11.
    1. Xia W, Shen Y, Xie H, Zheng S. Involvement of endoplasmic reticulum in hepatitis B virus replication. Virus Res. 2006;121:116–121. doi: 10.1016/j.virusres.2006.01.020.
    1. Cacciola I, et al. Genomic heterogeneity of hepatitis B virus (HBV) and outcome of perinatal HBV infection. J. Hepatol. 2002;36:426–432. doi: 10.1016/S0168-8278(01)00295-1.
    1. Thursz MR, et al. Association between an MHC class II allele and clearance of hepatitis B virus in the Gambia. N. Engl. J. Med. 1995;332:1065–1069. doi: 10.1056/NEJM199504203321604.
    1. Chisari FV, Ferrari C. Hepatitis B virus immunopathogenesis. Annu. Rev. Immunol. 1995;13:29–60. doi: 10.1146/annurev.iy.13.040195.000333.
    1. Lin TM, et al. Hepatitis B virus markers in Chinese twins. Anticancer Res. 1989;9:737–741.
    1. Kamatani Y, et al. A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nat. Genet. 2009;41:591–595. doi: 10.1038/ng.348.
    1. Hu Z, et al. New loci associated with chronic hepatitis B virus infection in Han Chinese. Nat. Genet. 2013;45:1499–1503. doi: 10.1038/ng.2809.
    1. Chang SW, et al. A genome-wide association study on chronic HBV infection and its clinical progression in male Han-Taiwanese. PLoS One. 2014;9:e99724. doi: 10.1371/journal.pone.0099724.
    1. Wang HW, et al. Strikingly different penetrance of LHON in two Chinese families with primary mutation G11778A is independent of mtDNA haplogroup background and secondary mutation G13708A. Mutat. Res. 2008;643:48–53. doi: 10.1016/j.mrfmmm.2008.06.004.
    1. Bi R, et al. Mitochondrial DNA haplogroup B5 confers genetic susceptibility to Alzheimer’s disease in Han Chinese. Neurobiol. Aging. 2015;36:1604 e1607–1616. doi: 10.1016/j.neurobiolaging.2014.10.009.
    1. Fuku N, et al. Mitochondrial haplogroup N9a confers resistance against type 2 diabetes in Asians. Am. J. Hum. Genet. 2007;80:407–415. doi: 10.1086/512202.
    1. Xing J, et al. Mitochondrial DNA content: its genetic heritability and association with renal cell carcinoma. J. Natl. Cancer Inst. 2008;100:1104–1112. doi: 10.1093/jnci/djn213.
    1. Wang HW, Xu Y, Miao YL, Luo HY, Wang KH. Mitochondrial DNA Haplogroup A may confer a genetic susceptibility to AIDS group from Southwest China. Mitochondrial DNA A DNA Mapp. Seq. Anal. 2016;27:2221–2224.
    1. Claus C, et al. Activation of the Mitochondrial Apoptotic Signaling Platform during Rubella Virus Infection. Viruses. 2015;7:6108–6126. doi: 10.3390/v7122928.
    1. Wang C, et al. Circulating mitochondrial DNA content associated with the risk of liver cirrhosis: a nested case-control study. Dig. Dis. Sci. 2015;60:1707–1715. doi: 10.1007/s10620-015-3523-1.
    1. Wheelhouse NM, Lai PB, Wigmore SJ, Ross JA, Harrison DJ. Mitochondrial D-loop mutations and deletion profiles of cancerous and noncancerous liver tissue in hepatitis B virus-infected liver. Br. J. Cancer. 2005;92:1268–1272. doi: 10.1038/sj.bjc.6602496.
    1. Carelli V, et al. Haplogroup effects and recombination of mitochondrial DNA: novel clues from the analysis of Leber hereditary optic neuropathy pedigrees. Am. J. Hum. Genet. 2006;78:564–574. doi: 10.1086/501236.
    1. Zhang AM, et al. Mitochondrial DNA haplogroup background affects LHON, but not suspected LHON, in Chinese patients. PLoS One. 2011;6:e27750. doi: 10.1371/journal.pone.0027750.
    1. Baudouin SV, et al. Mitochondrial DNA and survival after sepsis: a prospective study. Lancet. 2005;366:2118–2121. doi: 10.1016/S0140-6736(05)67890-7.
    1. Hwang S, et al. Gene expression pattern in transmitochondrial cytoplasmic hybrid cells harboring type 2 diabetes-associated mitochondrial DNA haplogroups. PLoS One. 2011;6:e22116. doi: 10.1371/journal.pone.0022116.
    1. Niu Q, et al. Effects of mitochondrial haplogroup N9a on type 2 diabetes mellitus and its associated complications. Exp. Ther. Med. 2015;10:1918–1924. doi: 10.3892/etm.2015.2751.
    1. Hart AB, Samuels DC, Hulgan T. The other genome: a systematic review of studies of mitochondrial DNA haplogroups and outcomes of HIV infection and antiretroviral therapy. AIDS Rev. 2013;15:213–220.
    1. Alexe G, et al. Enrichment of longevity phenotype in mtDNA haplogroups D4b2b, D4a, and D5 in the Japanese population. Hum. Genet. 2007;121:347–356. doi: 10.1007/s00439-007-0330-6.
    1. Li XY, et al. Association of mitochondrial haplogroup D and risk of esophageal cancer in Taihang Mountain and Chaoshan areas in China. Mitochondrion. 2011;11:27–32. doi: 10.1016/j.mito.2010.06.005.
    1. Milich D, Liang TJ. Exploring the biological basis of hepatitis B e antigen in hepatitis B virus infection. Hepatology. 2003;38:1075–1086. doi: 10.1053/jhep.2003.50453.
    1. Wu S, et al. Hepatitis B virus e antigen physically associates with receptor-interacting serine/threonine protein kinase 2 and regulates IL-6 gene expression. J. Infect. Dis. 2012;206:415–420. doi: 10.1093/infdis/jis363.
    1. Micheloud D, et al. European mitochondrial DNA haplogroups and metabolic disorders in HIV/HCV-coinfected patients on highly active antiretroviral therapy. J. Acquir. Immune. Defic. Syndr. 2011;58:371–378. doi: 10.1097/QAI.0b013e31822d2629.
    1. Guzmán-Fulgencio M, et al. European mitochondrial haplogroups are not associated with hepatitis C virus (HCV) treatment response in HIV/HCV-coinfected patients. HIV Med. 2014;15:425–430. doi: 10.1111/hiv.12126.
    1. van der Walt JM, et al. Mitochondrial polymorphisms significantly reduce the risk of Parkinson disease. Am. J. Hum. Genet. 2003;72:804–811. doi: 10.1086/373937.
    1. Brown MD, et al. The role of mtDNA background in disease expression: a new primary LHON mutation associated with Western Eurasian haplogroup. J. Hum. Genet. 2002;110:130–138. doi: 10.1007/s00439-001-0660-8.
    1. Tang CM, Yau TO, Yu J. Management of chronic hepatitis B infection: current treatment guidelines, challenges, and new developments. World J. Gastroenterol. 2014;20:6262–6278. doi: 10.3748/wjg.v20.i20.6262.
    1. Björnsson HK, Olafsson S, Bergmann OM, Björnsson ES. A prospective study on the causes of notably raised alanine aminotransferase (ALT) Scand. J. Gastroenterol. 2016;51:594–600. doi: 10.3109/00365521.2015.1121516.
    1. Xu HM, Chen Y, Xu J, Zhou Q. Drug-induced liver injury in hospitalized patients with notably elevated alanine aminotransferase. World J. Gastroenterol. 2012;18:5972–5978. doi: 10.3748/wjg.v18.i41.5972.
    1. Xu H, et al. Lamivudine/telbivudine-associated neuromyopathy: neurogenic damage, mitochondrial dysfunction and mitochondrial DNA depletion. J. Clin. Pathol. 2014;67:999–1005. doi: 10.1136/jclinpath-2013-202069.
    1. Zhang W, et al. A matrilineal genetic legacy from the last glacial maximum confers susceptibility to schizophrenia in Han Chinese. J. Genet. Genomics. 2014;41:397–407. doi: 10.1016/j.jgg.2014.05.004.
    1. Andrews RM, et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 1999;23:147. doi: 10.1038/13779.
    1. van Oven M, Kayser M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum. Mutat. 2009;30:E386–394. doi: 10.1002/humu.20921.
    1. Fan L, Yao YG. An update to MitoTool: using a new scoring system for faster mtDNA haplogroup determination. Mitochondrion. 2013;13:360–363. doi: 10.1016/j.mito.2013.04.011.
    1. Bandelt HJ, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999;16:37–48. doi: 10.1093/oxfordjournals.molbev.a026036.

Source: PubMed

3
Abonnere