Deciphering the Role of Host Genetics in Susceptibility to Severe COVID-19

Madalina Elena Carter-Timofte, Sofie Eg Jørgensen, Mette Ratzer Freytag, Michelle Mølgaard Thomsen, Nanna-Sophie Brinck Andersen, Ali Al-Mousawi, Alon Schneider Hait, Trine H Mogensen, Madalina Elena Carter-Timofte, Sofie Eg Jørgensen, Mette Ratzer Freytag, Michelle Mølgaard Thomsen, Nanna-Sophie Brinck Andersen, Ali Al-Mousawi, Alon Schneider Hait, Trine H Mogensen

Abstract

Coronavirus disease-19 (COVID-19) describes a set of symptoms that develop following infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Whilst COVID-19 disease is most serious in patients with significant co-morbidities, the reason for healthy individuals succumbing to fulminant infection is largely unexplained. In this review, we discuss the most recent findings in terms of clinical features and the host immune response, and suggest candidate immune pathways that may be compromised in otherwise healthy individuals with fulminating COVID-19. On the basis of this early knowledge we reason a potential genetic effect on host immune response pathways leading to increased susceptibility to SARS-CoV-2 infection. Understanding these pathways may help not only in unraveling disease pathogenesis, but also in suggesting targets for therapy and prophylaxis. Importantly such insight should instruct efforts to identify those at increased risk in order to institute preventative measures, such as prophylactic medication and/or vaccination, when such opportunities arise in the later phases of the current pandemic or during future similar pandemics.

Keywords: SARS-coronavirus 2; host immune defenses; immunopathology; innate immunity; primary immunodeficiency; whole exome sequencing.

Copyright © 2020 Carter-Timofte, Jørgensen, Freytag, Thomsen, Brinck Andersen, Al-Mousawi, Hait and Mogensen.

Figures

Figure 1
Figure 1
Induction of interferons (IFN) and signaling by the type I and III IFN receptors. The presence of microbial or self nucleic acid in the cytosol or within the endosomal compartment activates pattern recognition receptors (PRR)s. RNA activates retinoic acid-inducible receptor (RIG)-I in the cytosol and Toll-like receptor (TLR)3 and TLR7 in the endosomal compartment. These events trigger signaling pathways through the adaptor molecules mitochondrial antiviral signaling protein (MAVS), TIR-domain-containing adapter-inducing interferon-β (TRIF), and Myeloid differentiation primary response (MyD)88 leading to phosphorylation and activation of the TANK binding kinase (TBK)1, which in turn phosphorylates the transcription factors IFN regulatory factor (IRF)3 and IRF7. Whereas IRF3 is constitutively present, IRF7 is only expressed at low levels but may be secondarily induced by Type I IFN. Phosphorylation of IRF3 and IRF7 leads to homodimerization, nuclear translocation, and expression of Type I IFNs (IFNα and IFNβ) and type III IFNs (IFNλ) acting on neighboring cells with type I and III IFN receptors, respectively. Type I IFN binds to IFNα/β receptor composed of IRFNAR1 and IFNAR2, whereas type III IFN binds to the IFNλ receptor composed of IFNLR1 and IL10Rβ. These events activate the downstream receptor-associated Janus-associated kinase (JAK)1 and tyrosine kinase (TYK)2 and subsequent tyrosine phosphorylation of STAT1 and STAT2. These activated transcription factors together with IRF9 form the heterotrimeric transcription factor IFN-stimulated gene factor (ISGF)3 complex which binds to IFN-stimulated regulatory elements (ISRE) in DNA. In addition, STAT1 homodimers form the IFN-γ-activated factor (GAF) complex which binds to γ-activated (GAS) sequences. Altogether, these transcription factors induce a broad spectrum of IFN-stimulated genes (ISG)s that mediate the complex “antiviral state” of IFNs.
Figure 2
Figure 2
Innate immune signaling pathways that are known to be activated during viral infection and replication. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects human cells through the angiotensin-converting enzyme 2 (ACE2 receptor) and the cellular serine protease TMPRSS2 for viral S protein priming. Following cellular entry, the virus RNA genome may be recognized by pattern recognition receptors (PRR)s, including endosomal Toll-like receptor (TLR)3 and TLR7 recognizing double-stranded and single-stranded RNA, respectively. In the cytosol the virus may be recognized by the retinoic acid inducible receptor (RIG)-I or the melanoma differentiation-associated protein (MDA)5. Following viral recognition by PRRs, this triggers signaling through IFN regulatory factor (IRF)3 and NF-κB to induce IFNs and pro-inflammatory cytokines. Similar responses may be activated by extracellular virus through TLR4.

References

    1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. . A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. (2020) 382:727–33. 10.1056/NEJMoa2001017
    1. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. (2020) 109:102433. 10.1016/j.jaut.2020.102433
    1. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. (2017) 39:529–39. 10.1007/s00281-017-0629-x
    1. Fung TS, Liu DX. Human coronavirus: host-pathogen interaction. Annu Rev Microbiol. (2019) 73:529–57. 10.1146/annurev-micro-020518-115759
    1. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. . Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. (2020) 382:1199–207.
    1. Mogensen TH. IRF and STAT transcription factors - from basic biology to roles in infection, protective immunity, and primary immunodeficiencies. Front Immunol. (2018) 9:3047. 10.3389/fimmu.2018.03047
    1. Bousfiha A, Jeddane L, Picard C, Ailal F, Bobby Gaspar H, Al-Herz W, et al. . The 2017. IUIS phenotypic classification for primary immunodeficiencies. J Clin Immunol. (2018) 38:129–43. 10.1007/s10875-017-0465-8
    1. Casanova JL, Abel L. Human genetics of infectious diseases: unique insights into immunological redundancy. Semin Immunol. (2018) 36:1–12. 10.1016/j.smim.2017.12.008
    1. Jouanguy E, Beziat V, Mogensen TH, Casanova JL, Tangye SG, Zhang SY. Human inborn errors of immunity to herpes viruses. Curr Opin Immunol. (2020) 62:106–22. 10.1016/j.coi.2020.01.004
    1. Casanova JL, Abel L. The human genetic determinism of life-threatening infectious diseases: genetic heterogeneity and physiological homogeneity? Hum Genet. (2020) 139:681–94. 10.1007/s00439-020-02184-w
    1. Zhang SY, Jouanguy E, Ugolini S, Smahi A, Elain G, Romero P, et al. . TLR3 deficiency in patients with herpes simplex encephalitis. Science. (2007) 317:1522–7. 10.1126/science.1139522
    1. Zhang SY, Clark NE, Freije CA, Pauwels E, Taggart AJ, Okada S, et al. . Inborn errors of RNA lariat metabolism in humans with brainstem viral infection. Cell. (2018) 172:952–65.e18. 10.1016/j.cell.2018.02.019
    1. Ogunjimi B, Zhang SY, Sorensen KB, Skipper KA, Carter-Timofte M, Kerner G, et al. . Inborn errors in RNA polymerase III underlie severe varicella zoster virus infections. J Clin Invest. (2017) 127:3543–56. 10.1172/JCI92280
    1. Carter-Timofte ME, Hansen AF, Christiansen M, Paludan SR, Mogensen TH. Mutations in RNA polymerase III genes and defective DNA sensing in adults with varicella-zoster virus CNS infection. Genes Immun. (2019) 20:214–23. 10.1038/s41435-018-0027-y
    1. Carter-Timofte ME, Hansen AF, Mardahl M, Fribourg S, Rapaport F, Zhang S-Y, et al. . Varicella-zoster virus CNS vasculitis and RNA polymerase III gene mutation in identical twins. Neurol. Neuroimmunol. Neuroinflamm. (2018) 5:e500. 10.1212/NXI.0000000000000500
    1. Ciancanelli MJ, Huang SX, Luthra P, Garner H, Itan Y, Volpi S, et al. . Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science. (2015) 348:448–53. 10.1126/science.aaa1578
    1. Hernandez N, Melki I, Jing H, Habib T, Huang SSY, Danielson J, et al. . Life-threatening influenza pneumonitis in a child with inherited IRF9 deficiency. J Exp Med. (2018) 215:2567–85. 10.1084/jem.20180628
    1. Lim HK, Huang SXL, Chen J, Kerner G, Gilliaux O, Bastard P, et al. . Severe influenza pneumonitis in children with inherited TLR3 deficiency. J Exp Med. (2019) 216:2038–56. 10.1084/jem.20181621
    1. Sologuren I, Martinez-Saavedra MT, Sole-Violan J, de Borges de Oliveira E, Jr, Betancor E, Casas I, et al. . Lethal influenza in two related adults with inherited GATA2 deficiency. J Clin Immunol. (2018) 38:513–26. 10.1007/s10875-018-0512-0
    1. Jorgensen SE, Christiansen M, Ryo LB, Gad HH, Gjedsted J, Staeheli P, et al. . Defective RNA sensing by RIG-I in severe influenza virus infection. Clin Exp Immunol. (2018) 192:366–76. 10.1111/cei.13120
    1. Lamborn IT, Jing H, Zhang Y, Drutman SB, Abbott JK, Munir S, et al. . Recurrent rhinovirus infections in a child with inherited MDA5 deficiency. J Exp Med. (2017) 214:1949–72. 10.1084/jem.20161759
    1. de Jong SJ, Crequer A, Matos I, Hum D, Gunasekharan V, Lorenzo L, et al. . The human CIB1-EVER1-EVER2 complex governs keratinocyte-intrinsic immunity to beta-papillomaviruses. J Exp Med. (2018) 215:2289–310. 10.1084/jem.20170308
    1. Bottino C, Falco M, Parolini S, Marcenaro E, Augugliaro R, Sivori S, et al. . NTB-A [correction of GNTB-A], a novel SH2D1A-associated surface molecule contributing to the inability of natural killer cells to kill Epstein-Barr virus-infected B cells in X-linked lymphoproliferative disease. J Exp Med. (2001) 194:235–46. 10.1084/jem.194.3.235
    1. Salzer E, Daschkey S, Choo S, Gombert M, Santos-Valente E, Ginzel S, et al. . Combined immunodeficiency with life-threatening EBV-associated lymphoproliferative disorder in patients lacking functional CD27. Haematologica. (2013) 98:473–8. 10.3324/haematol.2012.068791
    1. Marsh RA, Madden L, Kitchen BJ, Mody R, McClimon B, Jordan MB, et al. XIAP deficiency: a unique primary immunodeficiency best classified as X-linked familial hemophagocytic lymphohistiocytosis and not as X-linked lymphoproliferative disease. Blood. (2010) 116:1079–82. 10.1182/blood-2010-01-256099
    1. Linka RM, Risse SL, Bienemann K, Werner M, Linka Y, Krux F, et al. . Loss-of-function mutations within the IL-2 inducible kinase ITK in patients with EBV-associated lymphoproliferative diseases. Leukemia. (2012) 26:963–71. 10.1038/leu.2011.371
    1. Li FY, Chaigne-Delalande B, Su H, Uzel G, Matthews H, Lenardo MJ. XMEN disease: a new primary immunodeficiency affecting Mg2+ regulation of immunity against Epstein-Barr virus. Blood. (2014) 123:2148–52. 10.1182/blood-2013-11-538686
    1. Drutman SB, Mansouri D, Mahdaviani SA, Neehus AL, Hum D, Bryk R, et al. . Fatal cytomegalovirus infection in an adult with inherited NOS2 deficiency. N Engl J Med. (2020) 382:437–45. 10.1056/NEJMoa1910640
    1. Hambleton S, Goodbourn S, Young DF, Dickinson P, Mohamad SM, Valappil M, et al. . STAT2 deficiency and susceptibility to viral illness in humans. Proc Natl Acad Sci USA. (2013) 110:3053–8. 10.1073/pnas.1220098110
    1. Duncan CJ, Mohamad SM, Young DF, Skelton AJ, Leahy TR, Munday DC, et al. . Human IFNAR2 deficiency: Lessons for antiviral immunity. Sci Transl Med. (2015) 7:307ra154. 10.1126/scitranslmed.aac4227
    1. Bajema KL, Oster AM, McGovern OL, Lindstrom S, Stenger MR, Anderson TC, et al. . Persons evaluated for 2019. novel Coronavirus - United States, January. 2020. MMWR Morb Mortal Wkly Rep. (2020) 69:166–70. 10.15585/mmwr.mm6906e1
    1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. . Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. (2020) 395:497–506. 10.1016/S0140-6736(20)30183-5
    1. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. . Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. (2020) 8:475–81. 10.1016/S2213-2600(20)30079-5
    1. Zhu J, Ji P, Pang J, Zhong Z, Li H, He C, et al. Clinical characteristics of 3,062 COVID-19 patients: a meta-analysis. J Med Virol. (2020). [Epub ahead of print]. 10.1002/jmv.25884.
    1. Huang L, Zhang X, Zhang X, Wei Z, Zhang L, Xu J, et al. Rapid asymptomatic transmission of COVID-19 during the incubation period demonstrating strong infectivity in a cluster of youngsters aged 16-23 years outside Wuhan and characteristics of young patients with COVID-19: a prospective contact-tracing study. J Infect. (2020) 80:e1–13. 10.1016/j.jinf.2020.03.006
    1. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019. (COVID-19) outbreak in China: summary of a report of 72314 cases from the chinese center for disease control and prevention. JAMA. (2020). [Epub ahead of print]. 10.1001/jama.2020.2648.
    1. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. . Clinical characteristics of 138 hospitalized patients with 2019. novel coronavirus-infected pneumonia in Wuhan, China. JAMA. (2020) 323:1061–9. 10.1001/jama.2020.1585
    1. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. (2020) 382:1708–20. 10.1056/NEJMoa2002032
    1. Lechien JR, Chiesa-Estomba CM, De Siati DR, Horoi M, Le Bon SD, Rodriguez A, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. (2020) 6:1–11. 10.1007/s00405-020-05965-1
    1. Leonardi M, Padovani A, McArthur JC. Neurological manifestations associated with COVID-19: a review and a call for action. J Neurol. (2020) 267:1573–6. 10.1007/s00415-020-09896-z
    1. Roman GC, Spencer PS, Reis J, Buguet A, Faris MEA, Katrak SM, et al. . The neurology of COVID-19 revisited: a proposal from the Environmental Neurology Specialty Group of the World Federation of Neurology to implement international neurological registries. J Neurol Sci. (2020) 414:116884. 10.1016/j.jns.2020.116884
    1. Cheung KS, Hung IF, Chan PP, Lung KC, Tso E, Liu R, et al. . Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from the hong kong cohort and systematic review and meta-analysis. Gastroenterology. (2020). [Epub ahead of print]. 10.1053/j.gastro.2020.03.065.
    1. Henry BM. COVID-19, ECMO, and lymphopenia: a word of caution. Lancet Respir Med. (2020) 8:e24. 10.1016/S2213-2600(20)30119-3
    1. Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. (2020) 135:2033–40. 10.1182/blood.2020006000
    1. Dolhnikoff M, Duarte-Neto AN, de Almeida Monteiro RA, da Silva LFF, de Oliveira EP, Saldiva PHN, et al. . Pathological evidence of pulmonary thrombotic phenomena in severe COVID-19. J Thromb Haemost. (2020) 18:1517–9. 10.1111/jth.14844
    1. Al-Samkari H, Karp Leaf RS, Dzik WH, Carlson JC, Fogerty AE, Waheed A, et al. . COVID and coagulation: bleeding and thrombotic manifestations of SARS-CoV2 Infection. Blood. (2020). [Epub ahead of print]. 10.1182/blood.2020006520.
    1. Edler C, Schroder AS, Aepfelbacher M, Fitzek A, Heinemann A, Heinrich F, et al. . Dying with SARS-CoV-2 infection-an autopsy study of the first consecutive 80 cases in Hamburg, Germany. Int J Legal Med. (2020) 134:1275–84. 10.1007/s00414-020-02317-w
    1. Lagunas-Rangel FA, Chavez-Valencia V. High IL-6/IFN-gamma ratio could be associated with severe disease in COVID-19 patients. J Med Virol. (2020). [Epub ahead of print]. 10.1002/jmv.25900.
    1. Henderson LA, Canna SW, Schulert GS, Volpi S, Lee PY, Kernan KF, et al. . On the alert for cytokine storm: immunopathology in COVID-19. Arthritis Rheumatol. (2020). [Epub ahead of print]. 10.1002/art.41285.
    1. Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol. (2020) 20:269–70. 10.1038/s41577-020-0308-3
    1. Licciardi F, Giani T, Baldini L, Favalli EG, Caporali R, Cimaz R. COVID-19 and what pediatric rheumatologists should know: a review from a highly affected country. Pediatr Rheumatol Online J. (2020) 18:35. 10.1186/s12969-020-00422-z
    1. Ritchie AI, Singanayagam A. Immunosuppression for hyperinflammation in COVID-19: a double-edged sword? Lancet. (2020) 395:1111. 10.1016/S0140-6736(20)30691-7
    1. Jones VG, Mills M, Suarez D, Hogan CA, Yeh D, Bradley Segal J, et al. . COVID-19 and kawasaki disease: novel virus and novel case. Hosp Pediatr. (2020) 10:537–40. 10.1542/hpeds.2020-0123
    1. Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet. (2020) 395:1607–8. 10.1016/S0140-6736(20)31094-1
    1. Woo PC, Huang Y, Lau SK, Yuen KY. Coronavirus genomics and bioinformatics analysis. Viruses. (2010) 2:1804–20. 10.3390/v2081803
    1. Woo PC, Lau SK, Lam CS, Lau CC, Tsang AK, Lau JH, et al. . Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol. (2012) 86:3995–4008. 10.1128/JVI.06540-11
    1. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. . Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. (2020) 395:565–74. 10.1016/S0140-6736(20)30251-8
    1. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. . A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. (2020) 579:270–3. 10.1038/s41586-020-2012-7
    1. Li X, Zai J, Zhao Q, Nie Q, Li Y, Foley BT, et al. . Evolutionary history, potential intermediate animal host, and cross-species analyses of SARS-CoV-2. J Med Virol. (2020) 92:602–11. 10.1002/jmv.25731
    1. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. (2020) 26:450–2. 10.1038/s41591-020-0820-9
    1. Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al. . Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. (2020) 92:602–11. 10.1016/j.apsb.2020.02.008
    1. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. . Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. (2003) 426:450–4. 10.1038/nature02145
    1. Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol. (2010) 84:12658–64. 10.1128/JVI.01542-10
    1. Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol. (2011) 85:873–82. 10.1128/JVI.02062-10
    1. Yang XH, Deng W, Tong Z, Liu YX, Zhang LF, Zhu H, et al. . Mice transgenic for human angiotensin-converting enzyme 2 provide a model for SARS coronavirus infection. Comp Med. (2007) 57:450–9.
    1. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. . Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. (2020) 367:1260–3. 10.1126/science.abb2507
    1. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. . SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. (2020) 181:271–80.e8. 10.1016/j.cell.2020.02.052
    1. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. . Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. (2020) 581:215–20. 10.1038/s41586-020-2180-5
    1. Kirchdoerfer RN, Wang N, Pallesen J, Wrapp D, Turner HL, Cottrell CA, et al. Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Sci Rep. (2018) 8:15701 10.1038/s41598-018-36918-8
    1. Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. bioRxiv. (2020). [Epub ahead of print]. 10.1101/2020.01.26.919985.
    1. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. a first step in understanding SARS pathogenesis. J Pathol. (2004) 203:631–7. 10.1002/path.1570
    1. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. (2020) 14:185–92. 10.1007/s11684-020-0754-0
    1. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. . Clinical and immunologic features in severe and moderate Coronavirus Disease 2019. J Clin Invest. (2020) 130:2620–9. 10.1101/2020.02.16.20023903
    1. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. (2020) 38:1–9. 10.12932/AP-200220-0772
    1. Li Y, Chen M, Cao H, Zhu Y, Zheng J, Zhou H. Extraordinary GU-rich single-strand RNA identified from SARS coronavirus contributes an excessive innate immune response. Microbes Infect. (2013) 15:88–95. 10.1016/j.micinf.2012.10.008
    1. Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. (2014) 5:461. 10.3389/fimmu.2014.00461
    1. Totura AL, Whitmore A, Agnihothram S, Schafer A, Katze MG, Heise MT, et al. . Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. mBio. (2015) 6:e00638–15. 10.1128/mBio.00638-15
    1. Sheahan T, Morrison TE, Funkhouser W, Uematsu S, Akira S, Baric RS, et al. . MyD88 is required for protection from lethal infection with a mouse-adapted SARS-CoV. PLoS Pathog. (2008) 4:e1000240. 10.1371/journal.ppat.1000240
    1. Gralinski LE, Menachery VD, Morgan AP, Totura AL, Beall A, Kocher J, et al. . Allelic variation in the toll-like receptor adaptor protein Ticam2 contributes to SARS-coronavirus pathogenesis in mice. G3. (2017) 7:1653–63. 10.1534/g3.117.041434
    1. Cameron MJ, Ran L, Xu L, Danesh A, Bermejo-Martin JF, Cameron CM, et al. . Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome. J Virol. (2007) 81:8692–706. 10.1128/JVI.00527-07
    1. Faure E, Poissy J, Goffard A, Fournier C, Kipnis E, Titecat M, et al. . Distinct immune response in two MERS-CoV-infected patients: can we go from bench to bedside? PLoS One. (2014) 9:e88716. 10.1371/journal.pone.0088716
    1. Ku CL, von Bernuth H, Picard C, Zhang SY, Chang HH, Yang K, et al. . Selective predisposition to bacterial infections in IRAK-4-deficient children: IRAK-4-dependent TLRs are otherwise redundant in protective immunity. J Exp Med. (2007) 204:2407–22. 10.1084/jem.20070628
    1. Casanova JL, Abel L. Lethal infectious diseases as inborn errors of immunity: toward a synthesis of the germ and genetic theories. Annu Rev Pathol. (2020). [Epub ahead of print]. 10.1146/annurev-pathol-031920-101429.
    1. Zalinger ZB, Elliott R, Rose KM, Weiss SR. MDA5 Is Critical to Host Defense during Infection with Murine Coronavirus. J Virol. (2015) 89:12330–40. 10.1128/JVI.01470-15
    1. Menachery VD, Debbink K, Baric RS. Coronavirus non-structural protein 16: evasion, attenuation, and possible treatments. Virus Res. (2014) 194:191–9. 10.1016/j.virusres.2014.09.009
    1. Menachery VD, Yount BL, Jr., Josset L, Gralinski LE, Scobey T, et al. . Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2'-o-methyltransferase activity. J Virol. (2014) 88:4251–64. 10.1128/JVI.03571-13
    1. Zust R, Cervantes-Barragan L, Habjan M, Maier R, Neuman BW, Ziebuhr J, et al. . Ribose 2'-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol. (2011) 12:137–43. 10.1038/ni.1979
    1. Pillai PS, Molony RD, Martinod K, Dong H, Pang IK, Tal MC, et al. . Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease. Science. (2016) 352:463–6. 10.1126/science.aaf3926
    1. Nieto-Torres JL, Verdia-Baguena C, Jimenez-Guardeno JM, Regla-Nava JA, Castano-Rodriguez C, Fernandez-Delgado R, et al. . Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology. (2015) 485:330–9. 10.1016/j.virol.2015.08.010
    1. Shi CS, Nabar NR, Huang NN, Kehrl JH. SARS-Coronavirus open reading frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Discov. (2019) 5:101. 10.1038/s41420-019-0181-7
    1. Chen IY, Moriyama M, Chang MF, Ichinohe T. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front Microbiol. (2019) 10:50. 10.3389/fmicb.2019.00050
    1. Yap JKY, Moriyama M, Iwasaki A. Inflammasomes and pyroptosis as therapeutic targets for COVID-19. J Immunol. (2020). [Epub ahead of print]. 10.4049/jimmunol.2000513.
    1. Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Borczuk A, Cools-Lartigue J, Crawford JM, et al. . Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. (2020) 217:e20200652. 10.1084/jem.20200652
    1. Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, et al. . Neutrophil extracellular traps in COVID-19. JCI Insight. (2020) 5:11. 10.1101/2020.04.30.20086736
    1. Dahl H, Linde A, Strannegard O. In vitro inhibition of SARS virus replication by human interferons. Scand J Infect Dis. (2004) 36:829–31. 10.1080/00365540410021144
    1. Haagmans BL, Kuiken T, Martina BE, Fouchier RA, Rimmelzwaan GF, van Amerongen G, et al. . Pegylated interferon-alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat Med. (2004) 10:290–3. 10.1038/nm1001
    1. Sainz B, Jr., Mossel EC, Peters CJ, Garry RF. Interferon-beta and interferon-gamma synergistically inhibit the replication of severe acute respiratory syndrome-associated coronavirus (SARS-CoV). Virology. (2004) 329:11–7. 10.1016/j.virol.2004.08.011
    1. Stroher U, DiCaro A, Li Y, Strong JE, Aoki F, Plummer F, et al. . Severe acute respiratory syndrome-related coronavirus is inhibited by interferon- alpha. J Infect Dis. (2004) 189:1164–7. 10.1086/382597
    1. Kumaki Y, Ennis J, Rahbar R, Turner JD, Wandersee MK, Smith AJ, et al. . Single-dose intranasal administration with mDEF201 (adenovirus vectored mouse interferon-alpha) confers protection from mortality in a lethal SARS-CoV BALB/c mouse model. Antiviral Res. (2011) 89:75–82. 10.1016/j.antiviral.2010.11.007
    1. Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Treatment of SARS with human interferons. Lancet. (2003) 362:293–4. 10.1016/S0140-6736(03)13973-6
    1. Totura AL, Baric RS. SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon. Curr Opin Virol. (2012) 2:264–75. 10.1016/j.coviro.2012.04.004
    1. Yoshikawa T, Hill TE, Yoshikawa N, Popov VL, Galindo CL, Garner HR, et al. . Dynamic innate immune responses of human bronchial epithelial cells to severe acute respiratory syndrome-associated coronavirus infection. PLoS One. (2010) 5:e8729. 10.1371/journal.pone.0008729
    1. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Moller R, et al. . Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. (2020) 181:1036–45. e9. 10.1016/j.cell.2020.04.026
    1. Chu H, Chan JF, Wang Y, Yuen TT, Chai Y, Hou Y, et al. . Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19. Clin Infect Dis. (2020). [Epub ahead of print]. 10.1093/cid/ciaa410.
    1. Kindler E, Thiel V. To sense or not to sense viral RNA–essentials of coronavirus innate immune evasion. Curr Opin Microbiol. (2014) 20:69–75. 10.1016/j.mib.2014.05.005
    1. Zinzula L, Tramontano E. Strategies of highly pathogenic RNA viruses to block dsRNA detection by RIG-I-like receptors: hide, mask, hit. Antiviral Res. (2013) 100:615–35. 10.1016/j.antiviral.2013.10.002
    1. Kindler E, Thiel V, Weber F. Interaction of SARS and MERS coronaviruses with the antiviral interferon response. Adv Virus Res. (2016) 96:219–43. 10.1016/bs.aivir.2016.08.006
    1. Channappanavar R, Zhao J, Perlman S. T cell-mediated immune response to respiratory coronaviruses. Immunol Res. (2014) 59:118–28. 10.1007/s12026-014-8534-z
    1. Li CK, Wu H, Yan H, Ma S, Wang L, Zhang M, et al. . T cell responses to whole SARS coronavirus in humans. J Immunol. (2008) 181:5490–500. 10.4049/jimmunol.181.8.5490
    1. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. . Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. (2020). [Epub ahead of print]. 10.1093/cid/ciaa248.
    1. Pedersen SF, Ho YC. SARS-CoV-2: a storm is raging. J Clin Invest. (2020) 130:2202–5. 10.1172/JCI137647
    1. Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. . Reduction and functional exhaustion of t cells in patients with coronavirus disease 2019. (COVID-19). Front Immunol. (2020) 11:827. 10.3389/fimmu.2020.00827
    1. Zheng HY, Zhang M, Yang CX, Zhang N, Wang XC, Yang XP, et al. . Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. (2020) 17:541–43. 10.1038/s41423-020-0401-3
    1. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, et al. . Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. (2020). [Epub ahead of print]. 10.1016/j.cell.2020.05.015.
    1. Channappanavar R, Fett C, Zhao J, Meyerholz DK, Perlman S. Virus-specific memory CD8 T cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection. J Virol. (2014) 88:11034–44. 10.1128/JVI.01505-14
    1. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. . Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. (2020) 8:420–2. 10.1016/S2213-2600(20)30076-X
    1. Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, et al. . Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med. (2020) 26:842–44. 10.1038/s41591-020-0901-9
    1. Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK, et al. . Dysregulated type i interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected Mice. Cell Host Microbe. (2016) 19:181–93. 10.1016/j.chom.2016.01.007
    1. Wolfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Muller MA, et al. . Virological assessment of hospitalized patients with COVID-2019. Nature. (2020) 581:465–69. 10.1038/s41586-020-2196-x
    1. Hsueh PR, Huang LM, Chen PJ, Kao CL, Yang PC. Chronological evolution of IgM, IgA, IgG and neutralisation antibodies after infection with SARS-associated coronavirus. Clin Microbiol Infect. (2004) 10:1062–6. 10.1111/j.1469-0691.2004.01009.x
    1. Zhu M. SARS Immunity and Vaccination. Cell Mol Immunol. (2004) 1:193–8.
    1. Li G, Chen X, Xu A. Profile of specific antibodies to the SARS-associated coronavirus. N Engl J Med. (2003) 349:508–9. 10.1056/NEJM200307313490520
    1. Kellam P, Barclay W. The dynamics of humoral immune responses following SARS-CoV-2 infection and the potential for reinfection. J Gen Virol. (2020). [Epub ahead of print]. 10.1099/jgv.0.001439.
    1. Long QX, Liu BZ, Deng HJ, Wu GC, Deng K, Chen YK, et al. . Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med. (2020) 26:845–8. 10.1038/s41591-020-0897-1
    1. Zhao J, Yuan Q, Wang H, Liu W, Liao X, Su Y, et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis. (2020). [Epub ahead of print]. 10.1093/cid/ciaa344.
    1. To KK, Tsang OT, Leung WS, Tam AR, Wu TC, Lung DC, et al. . Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis. (2020) 20:565–74. 10.1016/S1473-3099(20)30196-1
    1. Liu W, Fontanet A, Zhang PH, Zhan L, Xin ZT, Baril L, et al. . Two-year prospective study of the humoral immune response of patients with severe acute respiratory syndrome. J Infect Dis. (2006) 193:792–5. 10.1086/500469
    1. Wu LP, Wang NC, Chang YH, Tian XY, Na DY, Zhang LY, et al. . Duration of antibody responses after severe acute respiratory syndrome. Emerg Infect Dis. (2007) 13:1562–4. 10.3201/eid1310.070576
    1. Ng OW, Chia A, Tan AT, Jadi RS, Leong HN, Bertoletti A, et al. . Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine. (2016) 34:2008–14. 10.1016/j.vaccine.2016.02.063
    1. Longdon B, Brockhurst MA, Russell CA, Welch JJ, Jiggins FM. The evolution and genetics of virus host shifts. PLoS Pathog. (2014) 10:e1004395. 10.1371/journal.ppat.1004395
    1. Bucciol G, Moens L, Bosch B, Bossuyt X, Casanova JL, Puel A, et al. . Lessons learned from the study of human inborn errors of innate immunity. J Allergy Clin Immunol. (2019) 143:507–27. 10.1016/j.jaci.2018.07.013
    1. Ziegler T, Matikainen S, Ronkko E, Osterlund P, Sillanpaa M, Siren J, et al. . Severe acute respiratory syndrome coronavirus fails to activate cytokine-mediated innate immune responses in cultured human monocyte-derived dendritic cells. J Virol. (2005) 79:13800–5. 10.1128/JVI.79.21.13800-13805.2005
    1. Law HK, Cheung CY, Ng HY, Sia SF, Chan YO, Luk W, et al. . Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood. (2005) 106:2366–74. 10.1182/blood-2004-10-4166
    1. Hamano E, Hijikata M, Itoyama S, Quy T, Phi NC, Long HT, et al. . Polymorphisms of interferon-inducible genes OAS-1 and MxA associated with SARS in the Vietnamese population. Biochem Biophys Res Commun. (2005) 329:1234–9. 10.1016/j.bbrc.2005.02.101
    1. He J, Feng D, de Vlas SJ, Wang H, Fontanet A, Zhang P, et al. . Association of SARS susceptibility with single nucleic acid polymorphisms of OAS1 and MxA genes: a case-control study. BMC Infect Dis. (2006) 6:106. 10.1186/1471-2334-6-106
    1. Song WC, FitzGerald GA. COVID-19, microangiopathy, hemostatic activation, and complement. J Clin Invest. (2020). [Epub ahead of print]. 10.1172/JCI140183.
    1. Bosmann M. Complement activation during critical illness: current findings and an outlook in the era of COVID-19. Am J Respir Crit Care Med. (2020). [Epub ahead of print]. 10.1164/rccm.202005-1926ED.
    1. Kulasekararaj AG, Lazana I, Large J, Posadas K, Eagleton H, Villajin JL, et al. . Terminal complement inhibition dampens the inflammation during COVID-19. Br J Haematol. (2020). [Epub ahead of print]. 10.1111/bjh.16916.
    1. Ezekowitz RA. Role of the mannose-binding lectin in innate immunity. J Infect Dis. (2003) 187(Suppl. 2):S335–9. 10.1086/374746
    1. Koch A, Melbye M, Sorensen P, Homoe P, Madsen HO, Molbak K, et al. . Acute respiratory tract infections and mannose-binding lectin insufficiency during early childhood. JAMA. (2001) 285:1316–21. 10.1001/jama.285.10.1316
    1. Hibberd ML, Sumiya M, Summerfield JA, Booy R, Levin M. Association of variants of the gene for mannose-binding lectin with susceptibility to meningococcal disease. Meningococcal Research Group. Lancet. (1999) 353:1049–53. 10.1016/S0140-6736(98)08350-0
    1. Garred P, Madsen HO, Balslev U, Hofmann B, Pedersen C, Gerstoft J, et al. . Susceptibility to HIV infection and progression of AIDS in relation to variant alleles of mannose-binding lectin. Lancet. (1997) 349:236–40. 10.1016/S0140-6736(96)08440-1
    1. Ip WK, Chan KH, Law HK, Tso GH, Kong EK, Wong WH, et al. . Mannose-binding lectin in severe acute respiratory syndrome coronavirus infection. J Infect Dis. (2005) 191:1697–704. 10.1086/429631
    1. Quinti I, Lougaris V, Milito C, Cinetto F, Pecoraro A, Mezzaroma I, et al. . A possible role for B cells in COVID-19? lesson from patients with agammaglobulinemia. J Allergy Clin Immunol. (2020). [Epub ahead of print]. 10.1016/j.jaci.2020.04.013.
    1. Peiris JS, Chu CM, Cheng VC, Chan KS, Hung IF, Poon LL, et al. . Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet. (2003) 361:1767–72. 10.1016/S0140-6736(03)13412-5
    1. Arabi YM, Arifi AA, Balkhy HH, Najm H, Aldawood AS, Ghabashi A, et al. . Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection. Ann Intern Med. (2014) 160:389–97. 10.7326/M13-2486
    1. Dauby N. Potential impact of COVID-19 in people living with HIV: experience from previous 21st century coronaviruses epidemics. AIDS. (2020) 34:1255–6. 10.1097/QAD.0000000000002555
    1. Casanova JL, Su HC, Effort CHG. A global effort to define the human genetics of protective immunity to SARS-CoV-2 infection. Cell. (2020) 181:1194–9. 10.1016/j.cell.2020.05.016
    1. Matzaraki V, Kumar V, Wijmenga C, Zhernakova A. The MHC locus and genetic susceptibility to autoimmune and infectious diseases. Genome Biol. (2017) 18:76. 10.1186/s13059-017-1207-1
    1. Dimarco AD. Covid-19 and ethnicity: it's too early to point to healthcare provider attitudes as a cause of poorer outcomes. BMJ. (2020) 369:m2181. 10.1136/bmj.m2181
    1. Lassale C, Gaye B, Hamer M, Gale CR, David Batty G. Ethnic disparities in hospitalisation for COVID-19 in England: the role of socioeconomic factors, mental health, and inflammatory and pro-inflammatory factors in a community-based cohort study. Brain Behav Immun. (2020). [Epub ahead of print]. 10.1016/j.bbi.2020.05.074.
    1. Galloway JB, Norton S, Barker RD, Brookes A, Carey I, Clarke BD, et al. A clinical risk score to identify patients with COVID-19 at high risk of critical care admission or death: an observational cohort study. J Infect. (2020). [Epub ahead of print]. 10.1016/j.jinf.2020.05.064.
    1. Bandi S, Nevid MZ, Mahdavinia M. African American children are at higher risk for COVID-19 infection. Pediatr Allergy Immunol. (2020). [Epub ahead of print]. 10.1111/pai.13298.
    1. Price-Haywood EG, Burton J, Fort D, Seoane L. Hospitalization and mortality among black patients and white patients with Covid-19. N Engl J Med. (2020). [Epub ahead of print]. 10.1056/NEJMsa2011686.
    1. Lin M, Tseng HK, Trejaut JA, Lee HL, Loo JH, Chu CC, et al. . Association of HLA class I with severe acute respiratory syndrome coronavirus infection. BMC Med Genet. (2003) 4:9. 10.1186/1471-2350-4-9
    1. Lau YL, Peiris JS. Pathogenesis of severe acute respiratory syndrome. Curr Opin Immunol. (2005) 17:404–10. 10.1016/j.coi.2005.05.009
    1. Ng MH, Lau KM, Li L, Cheng SH, Chan WY, Hui PK, et al. . Association of human-leukocyte-antigen class I (B*0703) and class II (DRB1*0301) genotypes with susceptibility and resistance to the development of severe acute respiratory syndrome. J Infect Dis. (2004) 190:515–8. 10.1086/421523
    1. Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X, et al. . COVID-19 infection: the perspectives on immune responses. Cell Death Differ. (2020) 27:1451–4. 10.1038/s41418-020-0530-3
    1. Zhao J, Yang Y, Huang H, Li D, Gu D, Lu X, et al. Relationship between the ABO Blood Group and the COVID-19 susceptibility. medRxiv. (2020). [Epub ahead of print]. 10.1101/2020.03.11.20031096.
    1. Cheng Y, Cheng G, Chui CH, Lau FY, Chan PK, Ng MH, et al. . ABO blood group and susceptibility to severe acute respiratory syndrome. JAMA. (2005) 293:1450–1. 10.1001/jama.293.12.1450-c
    1. Balagopal A, Thomas DL, Thio CL. IL28B and the control of hepatitis C virus infection. Gastroenterology. (2010) 139:1865–76. 10.1053/j.gastro.2010.10.004
    1. Williams FMK, Freidin MB, Mangino M, Couvreur S, Visconti A, Bowyer RCE, et al. Self-reported symptoms of covid-19 including symptoms most predictive of SARS-CoV- 2 infection, are heritable. medRxiv. (2020). [Epub ahead of print]. 10.1101/2020.04.22.20072124.
    1. Manthiram K, Zhou Q, Aksentijevich I, Kastner DL. The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation. Nat Immunol. (2017) 18:832–42. 10.1038/ni.3777
    1. Zhang K, Jordan MB, Marsh RA, Johnson JA, Kissell D, Meller J, et al. . Hypomorphic mutations in PRF1, MUNC13-4, and STXBP2 are associated with adult-onset familial HLH. Blood. (2011) 118:5794–8. 10.1182/blood-2011-07-370148
    1. Heeg M, Ammann S, Klemann C, Panning M, Falcone V, Hengel H, et al. . Is an infectious trigger always required for primary hemophagocytic lymphohistiocytosis? lessons from in utero and neonatal disease. Pediatr Blood Cancer. (2018) 65:e27344. 10.1002/pbc.27344
    1. Huang Y, Paxton WA, Wolinsky SM, Neumann AU, Zhang L, He T, et al. . The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med. (1996) 2:1240–3. 10.1038/nm1196-1240
    1. Stawiski EW, Diwanji D, Suryamohan K, Gupta R, Fellouse FA, Sathirapongsasuti JF, et al. Human ACE2 receptor polymorphisms predict SARS-CoV-2 susceptibility. bioRxiv. (2020). [Epub ahead of print]. 10.1101/2020.04.07.024752.
    1. Asselta R, Paraboschi EM, Mantovani A, Duga S. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. Aging. (2020). [Epub ahead of print]. 10.18632/aging.103415.
    1. (FDA) USFDA Corona Virus Disease 2019. (COVID-19) (2020). Available online at: (accessed April 10, 2020).
    1. EMA Coronavirus Disease (COVID-19). (2020). Available online at: (accessed April 10, 2020).
    1. WHO “Solidarity” Clinical Trial for COVID-19 Treatments. (2020). Available online at: (accessed April 5, 2020).
    1. Li H, Zhou Y, Zhang M, Wang H, Zhao Q, Liu J. Updated approaches against SARS-CoV-2. Antimicrob Agents Chemother. (2020) 64:e00483–20. 10.1128/AAC.00483-20
    1. Martinez MA. Compounds with therapeutic potential against novel respiratory 2019 coronavirus. Antimicrob Agents Chemother. (2020) 64:e00399–20. 10.1128/AAC.00399-20
    1. Gordon CJ, Tchesnokov EP, Feng JY, Porter DP, Gotte M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J Biol Chem. (2020) 295: 4773–9. 10.1074/jbc.AC120.013056
    1. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. . Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. (2020) 30:269–71. 10.1038/s41422-020-0282-0
    1. Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med. (2017) 9:eaal3653 10.1126/scitranslmed.aal3653
    1. Lo MK, Jordan R, Arvey A, Sudhamsu J, Shrivastava-Ranjan P, Hotard AL, et al. . GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci Rep. (2017) 7:43395. 10.1038/srep43395
    1. Sheahan TP, Sims AC, Leist SR, Schäfer A, Won J, Brown AJ, et al. . Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. (2020) 11:222. 10.1038/s41467-019-13940-6
    1. de Wit E, Feldmann F, Cronin J, Jordan R, Okumura A, Thomas T, et al. . Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci USA. (2020) 117:6771–6. 10.1073/pnas.1922083117
    1. Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. . Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. (2020) 395:1569–78. 10.1016/S0140-6736(20)31022-9
    1. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. . Remdesivir for the treatment of Covid-19 - preliminary report. N Engl J Med. (2020). [Epub ahead of print]. 10.1056/NEJMoa2007764.
    1. Goldman JD, Lye DCB, Hui DS, Marks KM, Bruno R, Montejano R, et al. Remdesivir for 5 or 10 days in patients with severe Covid-19. N Engl J Med. (2020). 10.1056/NEJMoa2015301
    1. Antinori S, Cossu MV, Ridolfo AL, Rech R, Bonazzetti C, Pagani G, et al. . Compassionate remdesivir treatment of severe Covid-19 pneumonia in intensive care unit (ICU) and Non-ICU patients: Clinical outcome and differences in post-treatment hospitalisation status. Pharmacol Res. (2020) 158:104899. 10.1016/j.phrs.2020.104899
    1. Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY. Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov. (2016) 15:327–47. 10.1038/nrd.2015.37
    1. Choy KT, Yin-Lam Wong A, Kaewpreedee P, Sia SF, Chen D, Yan Hui KP, et al. . Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res. (2020) 2020:104786. 10.1016/j.antiviral.2020.104786
    1. Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. . In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Clin Infect Dis. (2020). [Epub ahead of print]. 10.1093/cid/ciaa237.
    1. Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, et al. . Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. (2020) 6:16. 10.1038/s41421-020-0156-0
    1. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. . A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. (2020) 382:1787–99. 10.1056/NEJMc2008043
    1. Borba MGS, Val FFA, Sampaio VS, Alexandre MAA, Melo GC, Brito M, et al. Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: a randomized clinical trial. JAMA Netw Open. (2020) 3:e208857 10.1001/jamanetworkopen.2020.8857
    1. Mahevas M, Tran VT, Roumier M, Chabrol A, Paule R, Guillaud C, et al. . Clinical efficacy of hydroxychloroquine in patients with covid-19 pneumonia who require oxygen: observational comparative study using routine care data. BMJ. (2020) 369:m1844. 10.1136/bmj.m1844
    1. Boulware DR, Pullen MF, Bangdiwala AS, Pastick KA, Lofgren SM, Okafor EC, et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19. N Engl J Med. (2020). [Epub ahead of print]. 10.1056/NEJMoa2016638.
    1. Geleris J, Sun Y, Platt J, Zucker J, Baldwin M, Hripcsak G, et al. . Observational study of hydroxychloroquine in hospitalized patients with Covid-19. N Engl J Med. (2020) 382:2411–8. 10.1056/NEJMoa2012410
    1. Rosenberg ES, Dufort EM, Udo T, Wilberschied LA, Kumar J, Tesoriero J, et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York State. JAMA. (2020). [Epub ahead of print]. 10.1001/jama.2020.8630.
    1. Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. (2020) 2020:105949 10.1016/j.ijantimicag.2020.105949
    1. Huang M, Tang T, Pang P, Li M, Ma R, Lu J, et al. Treating COVID-19 with chloroquine. J Mol Cell Biol. (2020) 12:322–5. 10.1093/jmcb/mjaa014
    1. Mehra MR, Desai SS, Ruschitzka F, Patel AN. Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet. (2020). 10.1016/S0140-6736(20)31180-6
    1. WHO WHO Director-General's Opening Remarks at the Media Briefing on COVID-19. (2020). Available online at: (accessed May 25, 2020).
    1. WHO WHO Director-General's Opening Remarks at the Media Briefing on COVID-19. (2020). Available online at: (accessed June 3, 2020).
    1. Zhou Y, Vedantham P, Lu K, Agudelo J, Carrion R, Jr., et al. . Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res. (2015) 116:76–84. 10.1016/j.antiviral.2015.01.011
    1. FOIPAN Camostat Mesilate Tablets Information Sheet. Osaka: Ono Pharmaceutical CO., Ltd.
    1. Ramsey ML, Nuttall J, Hart PA. A phase 1/2 trial to evaluate the pharmacokinetics, safety, and efficacy of NI-03 in patients with chronic pancreatitis: study protocol for a randomized controlled trial on the assessment of camostat treatment in chronic pancreatitis (TACTIC). Trials. (2019) 20:501. 10.1186/s13063-019-3606-y
    1. The Impact of Camostat Mesilate on COVID-19 Infection (CamoCO-19). NCT04321096: ; (2020). Available online at: (accessed April 16, 2020).
    1. Toniati P, Piva S, Cattalini M, Garrafa E, Regola F, Castelli F, et al. . Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in Brescia, Italy. Autoimmun Rev. (2020) 19:102568. 10.1016/j.autrev.2020.102568pagebreak
    1. Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. . Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA. (2020) 117:10970–5. 10.1073/pnas.2005615117
    1. Cavalli G, De Luca G, Campochiaro C, Della-Torre E, Ripa M, Canetti D, et al. . Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. (2020) 2:e325–31. 10.1016/S2665-9913(20)30127-2
    1. Huet T, Beaussier H, Voisin O, Jouveshomme S, Dauriat G, Lazareth I, et al. Anakinra for severe forms of COVID-19: a cohort study. Lancet. (2020) 2:e393–400. 10.1016/S2665-9913(20)30164-8
    1. Dimopoulos G, de Mast Q, Markou N, Theodorakopoulou M, Komnos A, Mouktaroudi M, et al. . Favorable anakinra responses in severe Covid-19 patients with secondary hemophagocytic lymphohistiocytosis. Cell Host Microbe. (2020). [Epub ahead of print]. 10.1016/j.chom.2020.05.007.
    1. Rilinger J, Kern WV, Duerschmied D, Supady A, Bode C, Staudacher DL, et al. . A prospective, randomised, double blind placebo-controlled trial to evaluate the efficacy and safety of tocilizumab in patients with severe COVID-19 pneumonia (TOC-COVID): A structured summary of a study protocol for a randomised controlled trial. Trials. (2020) 21:470. 10.1186/s13063-020-04447-3
    1. Maes B, Bosteels C, De Leeuw E, Declercq J, Van Damme K, Delporte A, et al. Treatment of severely ill COVID-19 patients with anti-interleukin drugs (COV-AID): A structured summary of a study protocol for a randomised controlled trial. Trials. (2020) 21:468 10.1186/s13063-020-04453-5
    1. Salvarani C, Bajocchi G, Mancuso P, Galli E, Muratore F, Boiardi L, et al. . Susceptibility and severity of COVID-19 in patients treated with bDMARDS and tsDMARDs: a population-based study. Ann Rheum Dis. (2020) 79:986–8. 10.1136/annrheumdis-2020-217903
    1. Cugno M, Meroni PL, Gualtierotti R, Griffini S, Grovetti E, Torri A, et al. . Complement activation in patients with COVID-19: A novel therapeutic target. J Allergy Clin Immunol. (2020). [Epub ahead of print]. 10.1016/j.jaci.2020.05.006.
    1. WHO Blueprint, Landscape analysis of therapeutics as 21st March 2020. (2020). Available online at: ) (accessed April 11, 2020).
    1. WHO DRAFT landscape of COVID-19 candidate vaccines. (2020). Available online at: (accessed April 12, 2020).

Source: PubMed

3
Abonnere