Does comorbidity increase the risk of patients with COVID-19: evidence from meta-analysis

Bolin Wang, Ruobao Li, Zhong Lu, Yan Huang, Bolin Wang, Ruobao Li, Zhong Lu, Yan Huang

Abstract

Currently, the number of patients with coronavirus disease 2019 (COVID-19) has increased rapidly, but relationship between comorbidity and patients with COVID-19 still not clear. The aim was to explore whether the presence of common comorbidities increases COVID-19 patients' risk. A literature search was performed using the electronic platforms (PubMed, Cochrane Library, Embase, and other databases) to obtain relevant research studies published up to March 1, 2020. Relevant data of research endpoints in each study were extracted and merged. All data analysis was performed using Stata12.0 software. A total of 1558 patients with COVID-19 in 6 studies were enrolled in our meta-analysis eventually. Hypertension (OR: 2.29, P<0.001), diabetes (OR: 2.47, P<0.001), chronic obstructive pulmonary disease (COPD) (OR: 5.97, P<0.001), cardiovascular disease (OR: 2.93, P<0.001), and cerebrovascular disease (OR:3.89, P=0.002)were independent risk factors associated with COVID-19 patients. The meta-analysis revealed no correlation between increased risk of COVID-19 and liver disease, malignancy, or renal disease. Hypertension, diabetes, COPD, cardiovascular disease, and cerebrovascular disease are major risk factors for patients with COVID-19. Knowledge of these risk factors can be a resource for clinicians in the early appropriate medical management of patients with COVID-19.

Keywords: COVID-19; comorbidity; meta-analysis; risk.

Conflict of interest statement

CONFLICTS OF INTEREST: The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Flow diagram of the literature search and selection process in the meta-analysis.
Figure 2
Figure 2
Relationship between comorbidity and patients with COVID-19. (A) Hypertension; (B) Diabetes; (C) COPD; (D) Liver Disease.
Figure 2
Figure 2
Relationship between comorbidity and patients with COVID-19. (E) Malignancy; (F) Renal disease; (G) Cardiovascular disease; (H) Cerebrovascular disease.
Figure 3
Figure 3
Publication bias assessment. (A) Hypertension; (B) Diabetes; (C) COPD; (D) Liver Disease.

References

    1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, et al.. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395:497–506. 10.1016/S0140-6736(20)30183-5
    1. Hui DS, I Azhar E, Madani TA, Ntoumi F, Kock R, Dar O, Ippolito G, Mchugh TD, Memish ZA, Drosten C, Zumla A, Petersen E. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020; 91:264–66. 10.1016/j.ijid.2020.01.009
    1. Jiang F, Deng L, Zhang L, Cai Y, Cheung CW, Xia Z. Review of the Clinical Characteristics of Coronavirus Disease 2019 (COVID-19). J Gen Intern Med. 2020. [Epub ahead of print]. 10.1007/s11606-020-05762-w
    1. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DS, Du B, Li LJ, Zeng G, et al., and China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020. [Epub ahead of print]. 10.1056/NEJMoa2002032
    1. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020. [Epub ahead of print]. 10.1001/jama.2020.1585
    1. Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, Akdis CA, Gao YD. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020. [Epub ahead of print]. 10.1111/all.14238
    1. Xu XW, Wu XX, Jiang XG, Xu KJ, Ying LJ, Ma CL, Li SB, Wang HY, Zhang S, Gao HN, Sheng JF, Cai HL, Qiu YQ, Li LJ. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ. 2020; 368:m606. 10.1136/bmj.m606
    1. Liu W, Tao ZW, Lei W, Ming-Li Y, Kui L, Ling Z, Shuang W, Yan D, Jing L, Liu HG, Ming Y, Yi H. Analysis of factors associated with disease outcomes in hospitalized patients with 2019 novel coronavirus disease. Chin Med J (Engl). 2020. [Epub ahead of print]. 10.1097/CM9.0000000000000775
    1. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KS, Lau EH, Wong JY, Xing X, Xiang N, Wu Y, et al.. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med. 2020; 382:1199–207. 10.1056/NEJMoa2001316
    1. Tian S, Hu N, Lou J, Chen K, Kang X, Xiang Z, Chen H, Wang D, Liu N, Liu D, Chen G, Zhang Y, Li D, et al.. Characteristics of COVID-19 infection in Beijing. J Infect. 2020; 80:401–06. 10.1016/j.jinf.2020.02.018
    1. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395:507–13. 10.1016/S0140-6736(20)30211-7
    1. McInnes MD, Moher D, Thombs BD, McGrath TA, Bossuyt PM, Clifford T, Cohen JF, Deeks JJ, Gatsonis C, Hooft L, Hunt HA, Hyde CJ, Korevaar DA, et al., and and the PRISMA-DTA Group. Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies: the PRISMA-DTA Statement. JAMA. 2018; 319:388–96. 10.1001/jama.2017.19163
    1. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010; 25:603–05. 10.1007/s10654-010-9491-z

Source: PubMed

3
Abonnere