Vitamin C Depletion and All-Cause Mortality in Renal Transplant Recipients

Camilo G Sotomayor, Michele F Eisenga, Antonio W Gomes Neto, Akin Ozyilmaz, Rijk O B Gans, Wilhelmina H A de Jong, Dorien M Zelle, Stefan P Berger, Carlo A J M Gaillard, Gerjan J Navis, Stephan J L Bakker, Camilo G Sotomayor, Michele F Eisenga, Antonio W Gomes Neto, Akin Ozyilmaz, Rijk O B Gans, Wilhelmina H A de Jong, Dorien M Zelle, Stefan P Berger, Carlo A J M Gaillard, Gerjan J Navis, Stephan J L Bakker

Abstract

Vitamin C may reduce inflammation and is inversely associated with mortality in the general population. We investigated the association of plasma vitamin C with all-cause mortality in renal transplant recipients (RTR); and whether this association would be mediated by inflammatory biomarkers. Vitamin C, high sensitive C-reactive protein (hs-CRP), soluble intercellular cell adhesion molecule 1 (sICAM-1), and soluble vascular cell adhesion molecule 1 (sVCAM-1) were measured in a cohort of 598 RTR. Cox regression analyses were used to analyze the association between vitamin C depletion (≤28 µmol/L; 22% of RTR) and mortality. Mediation analyses were performed according to Preacher and Hayes's procedure. At a median follow-up of 7.0 (6.2-7.5) years, 131 (21%) patients died. Vitamin C depletion was univariately associated with almost two-fold higher risk of mortality (Hazard ratio (HR) 1.95; 95% confidence interval (95%CI) 1.35-2.81, p < 0.001). This association remained independent of potential confounders (HR 1.74; 95%CI 1.18-2.57, p = 0.005). Hs-CRP, sICAM-1, sVCAM-1 and a composite score of inflammatory biomarkers mediated 16, 17, 15, and 32% of the association, respectively. Vitamin C depletion is frequent and independently associated with almost two-fold higher risk of mortality in RTR. It may be hypothesized that the beneficial effect of vitamin C at least partly occurs through decreasing inflammation.

Keywords: hs-CRP; inflammation; mortality; renal transplant; vitamin C.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure A1
Figure A1
Mediation analysis of combined score between hs-CRP, sICAM-1 and sVCAM-1 on the association of plasma vitamin C concentration with all-cause mortality. a, b and c are the standardized regression coefficients between variables. The indirect effect (through a potential mediator) is calculated as a × b. Total effect (c) is a × b + c’. Magnitude of mediation is calculated as indirect effect divided by total effect.
Figure 1
Figure 1
Kaplan-Meier curve for all-cause mortality according to plasma vitamin C status (depleted versus non-depleted) among renal transplant recipients. Vitamin C depleted: ≤28 µmol/L; Vitamin C non-depleted: >28 µmol/L.
Figure 2
Figure 2
Association of plasma vitamin C with risk of all-cause mortality. The line in the graph represents the hazard ratio. The grey area represents the 95% confidence interval of the hazard ratio.

References

    1. Schippers H., Kalff M.W. Cost Comparison Haemodialysis and Renal Transplantation. HLA. 1976;7:86–90. doi: 10.1111/j.1399-0039.1976.tb01036.x.
    1. Laupacis A., Keown P., Pus N., Krueger H., Ferguson B., Wong C., Muirhead N. A Study of the Quality of Life and Cost-Utility of Renal Transplantation. Kidney Int. 1996;50:235–242. doi: 10.1038/ki.1996.307.
    1. Jofre R., Lopez-Gomez J.M., Moreno F., Sanz-Guajardo D., Valderrabano F. Changes in Quality of Life After Renal Transplantation. Am. J. Kidney Dis. 1998;32:93–100. doi: 10.1053/ajkd.1998.v32.pm9669429.
    1. Wolfe R.A., Ashby V.B., Milford E.L., Ojo A.O., Ettenger R.E., Agodoa L.Y.C., Held P.J., Port F.K. Comparison of Mortality in all Patients on Dialysis, Patients on Dialysis Awaiting Transplantation, and Recipients of a First Cadaveric Transplant. N. Engl. J. Med. 1999;341:1725–1730. doi: 10.1056/NEJM199912023412303.
    1. Fujisawa M., Ichikawa Y., Yoshiya K., Isotani S., Higuchi A., Nagano S., Arakawa S., Hamami G., Matsumoto O., Kamidono S. Assessment of Health-Related Quality of Life in Renal Transplant and Hemodialysis Patients using the SF-36 Health Survey. Urology. 2000;56:201–206. doi: 10.1016/S0090-4295(00)00623-3.
    1. Oniscu G.C., Brown H., Forsythe J.L. Impact of Cadaveric Renal Transplantation on Survival in Patients Listed for Transplantation. J. Am. Soc. Nephrol. 2005;16:1859–1865. doi: 10.1681/ASN.2004121092.
    1. Chkhotua A., Pantsulaia T., Managadze L. The Quality of Life Analysis in Renal Transplant Recipients and Dialysis Patients. Georgian Med. News. 2011;11:10–17.
    1. Tonelli M., Wiebe N., Knoll G., Bello A., Browne S., Jadhav D., Klarenbach S., Gill J. Systematic Review: Kidney Transplantation Compared with Dialysis in Clinically Relevant Outcomes. Am. J. Transpl. 2011;11:2093–2109. doi: 10.1111/j.1600-6143.2011.03686.x.
    1. Oterdoom L.H., de Vries A.P., van Ree R.M., Gansevoort R.T., van Son W.J., van der Heide J.J.H., Navis G., de Jong P.E., Gans R.O., Bakker S.J. N-Terminal Pro-B-Type Natriuretic Peptide and Mortality in Renal Transplant Recipients Versus the General Population. Transplantation. 2009;87:1562–1570. doi: 10.1097/TP.0b013e3181a4bb80.
    1. Kocak H., Ceken K., Yavuz A., Yucel S., Gurkan A., Erdogan O., Ersoy F., Yakupoglu G., Demirbas A., Tuncer M. Effect of Renal Transplantation on Endothelial Function in Haemodialysis Patients. Nephrol. Dial. Transpl. 2006;21:203–207. doi: 10.1093/ndt/gfi119.
    1. Turkmen K., Tonbul H.Z., Toker A., Gaipov A., Erdur F.M., Cicekler H., Anil M., Ozbek O., Selcuk N.Y., Yeksan M. The Relationship between Oxidative Stress, Inflammation, and Atherosclerosis in Renal Transplant and End-Stage Renal Disease Patients. Ren. Fail. 2012;34:1229–1237. doi: 10.3109/0886022X.2012.723580.
    1. Ocak N., Dirican M., Ersoy A., Sarandol E. Adiponectin, Leptin, Nitric Oxide, and C-Reactive Protein Levels in Kidney Transplant Recipients: Comparison with the Hemodialysis and Chronic Renal Failure. Ren. Fail. 2016;38:1639–1646. doi: 10.1080/0886022X.2016.1229965.
    1. Cañas L., Iglesias E., Pastor M.C., Barallat J., Juega J., Bancu I., Lauzurica R. Inflammation and Oxidation: Do they Improve After Kidney Transplantation? Relationship with Mortality After Transplantation. Int. Urol. Nephrol. 2017;49:533–540. doi: 10.1007/s11255-016-1435-4.
    1. Winkelmayer W.C., Lorenz M., Kramar R., Födinger M., Hörl W.H., Sunder-Plassmann G. C-Reactive Protein and Body Mass Index Independently Predict Mortality in Kidney Transplant Recipients. Am. J. Transplant. 2004;4:1148–1154. doi: 10.1111/j.1600-6143.2004.00477.x.
    1. Abedini S., Holme I., Marz W., Weihrauch G., Fellstrom B., Jardine A., Cole E., Maes B., Neumayer H.H., Gronhagen-Riska C., et al. Inflammation in Renal Transplantation. Clin. J. Am. Soc. Nephrol. 2009;4:1246–1254. doi: 10.2215/CJN.00930209.
    1. Langlois M., Duprez D., Delanghe J., De Buyzere M., Clement D.L. Serum Vitamin C Concentration is Low in Peripheral Arterial Disease and is Associated with Inflammation and Severity of Atherosclerosis. Circulation. 2001;103:1863–1868. doi: 10.1161/01.CIR.103.14.1863.
    1. Korantzopoulos P., Kolettis T.M., Kountouris E., Dimitroula V., Karanikis P., Pappa E., Siogas K., Goudevenos J.A. Oral Vitamin C Administration Reduces Early Recurrence Rates After Electrical Cardioversion of Persistent Atrial Fibrillation and Attenuates Associated Inflammation. Int. J. Cardiol. 2005;102:321–326. doi: 10.1016/j.ijcard.2004.12.041.
    1. Mikirova N., Casciari J., Rogers A., Taylor P. Effect of High-Dose Intravenous Vitamin C on Inflammation in Cancer Patients. J. Transl. Med. 2012;10:189. doi: 10.1186/1479-5876-10-189.
    1. Mikirova N., Casciari J., Riordan N., Hunninghake R. Clinical Experience with Intravenous Administration of Ascorbic Acid: Achievable Levels in Blood for Different States of Inflammation and Disease in Cancer Patients. J. Transl. Med. 2013;11:191. doi: 10.1186/1479-5876-11-191.
    1. Enstrom J.E., Kanim L.E., Klein M.A. Vitamin C Intake and Mortality among a Sample of the United States Population. Epidemiology. 1992;3:194–202. doi: 10.1097/00001648-199205000-00003.
    1. Pandey D.K., Shekelle R., Selwyn B.J., Tangney C., Stamler J. Dietary Vitamin C and Β-Carotene and Risk of Death in Middle-Aged Men the Western Electric Study. Am. J. Epidemiol. 1995;142:1269–1278. doi: 10.1093/oxfordjournals.aje.a117594.
    1. Sahyoun N.R., Jacques P.F., Russell R.M. Carotenoids, Vitamins C and E, and Mortality in an Eiderly Population. Am. J. Epidemiol. 1996;144:501–511. doi: 10.1093/oxfordjournals.aje.a008957.
    1. Loria C.M., Klag M.J., Caulfield L.E., Whelton P.K. Vitamin C Status and Mortality in US Adults. Am. J. Clin. Nutr. 2000;72:139–145.
    1. Khaw K., Bingham S., Welch A., Luben R., Wareham N., Oakes S., Day N. Relation between Plasma Ascorbic Acid and Mortality in Men and Women in EPIC-Norfolk Prospective Study: A Prospective Population Study. Lancet. 2001;357:657–663. doi: 10.1016/S0140-6736(00)04128-3.
    1. Irwin M.I., Hutchins B.K. A Conspectus of Research on Vitamin C Requirements of Man. J. Nutr. 1976;106:821–879.
    1. Jacob R.A., Skala J.H., Omaye S.T. Biochemical Indices of Human Vitamin C Status. Am. J. Clin. Nutr. 1987;46:818–826.
    1. Sauberlich H.E., Kretsch M.J., Taylor P.C., Johnson H.L., Skala J.H. Ascorbic Acid and Erythorbic Acid Metabolism in Nonpregnant Women. Am. J. Clin. Nutr. 1989;50:1039–1049.
    1. Blanchard J., Conrad K.A., Watson R.R., Garry P.J., Crawley J.D. Comparison of Plasma, Mononuclear and Polymorphonuclear Leucocyte Vitamin C Levels in Young and Elderly Women during Depletion and Supplementation. Eur. J. Clin. Nutr. 1989;43:97–106.
    1. Jacob R.A. Assessment of Human Vitamin C status12. J. Nutr. 1990;120:1480–1485.
    1. Johnston C.S., Thompson L.L. Vitamin C Status of an Outpatient Population. J. Am. Coll. Nutr. 1998;17:366–370. doi: 10.1080/07315724.1998.10718777.
    1. Johnston C.S., Solomon R.E., Corte C. Vitamin C Depletion is Associated with Alterations in Blood Histamine and Plasma Free Carnitine in Adults. J. Am. Coll. Nutr. 1996;15:586–591. doi: 10.1080/07315724.1996.10718634.
    1. De Leeuw K., Sanders J.S., Stegeman C., Smit A., Kallenberg C.G., Bijl M. Accelerated Atherosclerosis in Patients with Wegener’s Granulomatosis. Ann. Rheum. Dis. 2005;64:753–759. doi: 10.1136/ard.2004.029033.
    1. Montoye H.J., Kemper H.C., Saris W.H., Washburn R.A. Measuring Physical Activity and Energy Expenditure. Human Kinetics; Champaign, IL, USA: 1996.
    1. Levey A.S., Stevens L.A., Schmid C.H., Zhang Y.L., Castro A.F., Feldman H.I., Kusek J.W., Eggers P., Van Lente F., Greene T. A New Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 2009;150:604–612. doi: 10.7326/0003-4819-150-9-200905050-00006.
    1. Preacher K.J., Hayes A.F. SPSS and SAS Procedures for Estimating Indirect Effects in Simple Mediation Models. Behav. Res. Methods. 2004;36:717–731. doi: 10.3758/BF03206553.
    1. Hayes A.F. Beyond Baron and Kenny: Statistical Mediation Analysis in the New Millennium. Commun. Monogr. 2009;76:408–420. doi: 10.1080/03637750903310360.
    1. Zhang K., Li Y., Cheng X., Liu L., Bai W., Guo W., Wu L., Zuo L. Cross-over study of influence of oral vitamin C supplementation on inflammatory status in maintenance hemodialysis patients. BMC Nephrol. 2013;14:252. doi: 10.1186/1471-2369-14-252.
    1. Attallah N., Osman-Malik Y., Frinak S., Besarab A. Effect of intravenous ascorbic acid in hemodialysis patients with EPO-hyporesponsive anemia and hyperferritinemia. Am. J. Kidney Dis. 2006;47:644–654. doi: 10.1053/j.ajkd.2005.12.025.
    1. Koenig W., Sund M., Frohlich M., Lowel H., Hutchinson W.L., Pepys M.B. Refinement of the Association of Serum C-Reactive Protein Concentration and Coronary Heart Disease Risk by Correction for within-Subject Variation Over Time: The MONICA Augsburg Studies, 1984 and 1987. Am. J. Epidemiol. 2003;158:357–364. doi: 10.1093/aje/kwg135.
    1. Danesh J., Wheeler J.G., Hirschfield G.M., Eda S., Eiriksdottir G., Rumley A., Lowe G.D., Pepys M.B., Gudnason V. C-Reactive Protein and Other Circulating Markers of Inflammation in the Prediction of Coronary Heart Disease. N. Engl. J. Med. 2004;350:1387–1397. doi: 10.1056/NEJMoa032804.

Source: PubMed

3
Abonnere