Similar cardiometabolic effects of high- and moderate-intensity training among apparently healthy inactive adults: a randomized clinical trial

Robinson Ramírez-Vélez, Alejandra Tordecilla-Sanders, Luis Andrés Téllez-T, Diana Camelo-Prieto, Paula Andrea Hernández-Quiñonez, Jorge Enrique Correa-Bautista, Antonio Garcia-Hermoso, Rodrigo Ramirez-Campillo, Mikel Izquierdo, Robinson Ramírez-Vélez, Alejandra Tordecilla-Sanders, Luis Andrés Téllez-T, Diana Camelo-Prieto, Paula Andrea Hernández-Quiñonez, Jorge Enrique Correa-Bautista, Antonio Garcia-Hermoso, Rodrigo Ramirez-Campillo, Mikel Izquierdo

Abstract

Background: Metabolic syndrome (MetS) increases the risk of morbidity and mortality from cardiovascular disease, and exercise training is an important factor in the treatment and prevention of the clinical components of MetS.

Objective: The aim was to compare the effects of high-intensity interval training and steady-state moderate-intensity training on clinical components of MetS in healthy physically inactive adults.

Methods: Twenty adults were randomly allocated to receive either moderate-intensity continuous training [MCT group; 60-80% heart rate reserve (HRR)] or high-intensity interval training (HIT group; 4 × 4 min at 85-95% peak HRR interspersed with 4 min of active rest at 65% peak HRR). We used the revised International Diabetes Federation criteria for MetS. A MetS Z-score was calculated for each individual and each component of the MetS.

Results: In intent-to-treat analyses, the changes in MetS Z-score were 1.546 (1.575) in the MCT group and -1.249 (1.629) in the HIT group (between-groups difference, P = 0.001). The average number of cardiometabolic risk factors changed in the MCT group (-0.133, P = 0.040) but not in the HIT group (0.018, P = 0.294), with no difference between groups (P = 0.277).

Conclusion: Among apparently healthy physically inactive adults, HIT and MCT offer similar cardiometabolic protection against single MetS risk factors but differ in their effect on average risk factors per subject. Trial registration ClinicalTrials.gov NCT02738385 registered on March 23, 2016.

Keywords: Exercise training; Intensity; Metabolic syndrome; Randomised controlled trial.

Figures

Fig. 1
Fig. 1
CONSORT guidelines flow diagram for enrolment and randomization HIIT-heart study

References

    1. Townsend N, Nichols M, Scarborough P, Rayner M. Cardiovascular disease in Europe—epidemiological update 2015. Eur Heart J. 2015;36:2696–2705. doi: 10.1093/eurheartj/ehv428.
    1. Pattyn N, Cornelissen VA, Eshghi SRT, Vanhees L. The effect of exercise on the cardiovascular risk factors constituting the metabolic syndrome: a meta-analysis of controlled trials. Sports Med Auckland Nz. 2013;43:121–133. doi: 10.1007/s40279-012-0003-z.
    1. Ikram U, Snijder M, Agyemang C, Schene A, Peters R, Stronks K, et al. Perceived ethnic discrimination and the metabolic syndrome in ethnic minority groups: the healthy life in an urban setting study. Psychosom Med. 2017;79:101–111. doi: 10.1097/PSY.0000000000000350.
    1. Minino AM, Heron MP, Murphy SL, et al. Deaths: final data for 2004 (Rep. No. 55-19) Washington: US Department of Health and Human Services; 2007.
    1. Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third national health and nutrition examination survey. JAMA. 2002;287:356–359. doi: 10.1001/jama.287.3.356.
    1. Rodrigues SL, Baldo MP, Mill JG. Association of waist-stature ratio with hypertension and metabolic syndrome: population-based study. Arq Bras Cardiol. 2010;95:186–191. doi: 10.1590/S0066-782X2010005000073.
    1. Medina-Lezama J, Zea-Diaz H, Morey-Vargas OL, Bolaños-Salazar JF, Muñoz-Atahualpa E, Postigo-MacDowall M, et al. Prevalence of the metabolic syndrome in Peruvian Andean hispanics: the PREVENCION study. Diabetes Res Clin Pract. 2007;78:270–281. doi: 10.1016/j.diabres.2007.04.004.
    1. Lopez-Jaramillo P, Gomez-Arbelaez D, Sotomayor-Rubio A, Mantilla-Garcia D, Lopez-Lopez J. Maternal undernutrition and cardiometabolic disease: a Latin American perspective. BMC Med. 2015;13:41. doi: 10.1186/s12916-015-0293-8.
    1. Barceló A. Cardiovascular diseases in Latin America and the Caribbean. Lancet. 2006;368(9536):625–626. doi: 10.1016/S0140-6736(06)69223-4.
    1. Lanas F, Avezum A, Bautista LE, Diaz R, Luna M, Islam S, Yusuf S. Risk factors for acute myocardial infarction in Latin America: the INTERHEART Latin American study. Circulation. 2007;115(9):1067–1074. doi: 10.1161/CIRCULATIONAHA.106.633552.
    1. Kohl HW, 3rd, Craig CL, Lambert EV, Inoue S, Alkandari JR, Leetongin G, Kahlmeier S, Lancet Physical Activity Series Working Group The pandemic of physical inactivity: global action for public health. Lancet. 2012;380(9838):294–305. doi: 10.1016/S0140-6736(12)60898-8.
    1. Bouchard C, Blair SN, Katzmarzyk PT. Less sitting, more physical activity, or higher fitness? Mayo Clin Proc. 2015;90(11):1533–1540. doi: 10.1016/j.mayocp.2015.08.005.
    1. Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT, Lancet Physical Activity Series Working Group Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219–229. doi: 10.1016/S0140-6736(12)61031-9.
    1. Thosar SS, Bielko SL, Mather KJ, Johnston JD, Wallace JP. Effect of prolonged sitting and breaks in sitting time on endothelial function. Med Sci Sports Exerc. 2015;47:843–849. doi: 10.1249/MSS.0000000000000479.
    1. Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE, Zimmet PZ, Owen N. Breaks in sedentary time: beneficial associations with metabolic risk. Diabetes Care. 2008;31:661–666. doi: 10.2337/dc07-2046.
    1. Hughson RL, Shoemaker JK. Autonomic responses to exercise: deconditioning/inactivity. Auton Neurosci. 2015;188:32–35. doi: 10.1016/j.autneu.2014.10.012.
    1. Pattyn N, Cornelissen VA, Eshghi SR, Vanhees L. The effect of exercise on the cardiovascular risk factors constituting the metabolic syndrome: a meta-analysis of controlled trials. Sports Med. 2013;43(2):121–133. doi: 10.1007/s40279-012-0003-z.
    1. Ramos JS, Dalleck LC, Tjonna AE, et al. The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis. Sports Med. 2015;45:679–692. doi: 10.1007/s40279-015-0321-z.
    1. Cornelissen VA, Smart NA. Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc. 2013;2(1):e004473. doi: 10.1161/JAHA.112.004473.
    1. Ramírez-Vélez R, Hernandez A, Castro K, Tordecilla-Sanders A, González-Ruíz K, Correa-Bautista JE, Izquierdo M, García-Hermoso A. High intensity interval-vs resistance or combined-training for improving cardiometabolic health in overweight adults (Cardiometabolic HIIT-RT Study): study protocol for a randomised controlled trial. Trials. 2016;17(1):298. doi: 10.1186/s13063-016-1422-1.
    1. Ramírez-Vélez R, Tordecilla-Sanders A, Téllez-T LA, Camelo-Prieto D, Hernández-Quiñonez PA, Correa-Bautista JE, Garcia-Hermoso A, Ramírez-Campillo R, Izquierdo M. Effect of moderate versus high-intensity interval exercise training on heart rate variability parameters in inactive latin-american adults: a randomised clinical trial. J Strength Cond Res. 2017 Feb 1. doi: 10.1519/JSC.0000000000001833. (Epub ahead of print).
    1. Potteiger JA, Claytor RP, Hulver MW, Hughes MR, Carper MJ, Richmond S, Thyfault JP. Resistance exercise and aerobic exercise when paired with dietary energy restriction both reduce the clinical components of metabolic syndrome in previously physically inactive males. Eur J Appl Physiol. 2012;112(6):2035–2044. doi: 10.1007/s00421-011-2174-y.
    1. Gibala M. Molecular responses to high-intensity interval exercise. Appl Physiol Nutr Metab. 2009;34:428–432. doi: 10.1139/H09-046.
    1. Schwingshackl L, Dias S, Strasser B, Hoffmann G. Impact of different training modalities on anthropometric and metabolic characteristics in overweight/obese subjects: a systematic review and network meta-analysis. PLoS ONE. 2013;8(12):e82853. doi: 10.1371/journal.pone.0082853.
    1. Cooper AJ, Dearnley K, Williams KM, Sharp SJ, van Sluijs EM, Brage S, Sutton S, Griffin SJ. Protocol for get moving: a randomised controlled trial to assess the effectiveness of three minimal contact interventions to promote fitness and physical activity in working adults. BMC Public Health. 2015;15:296. doi: 10.1186/s12889-015-1654-0.
    1. Gillies CL, Abrams KR, Lambert PC, Cooper NJ, Sutton AJ, Hsu RT, et al. Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. BMJ Clin Res ed. 2007;334(7588):299. doi: 10.1136/bmj.39063.689375.55.
    1. Biddle SJ, Batterham AM. High-intensity interval exercise training for public health: a big HIT or shall we HIT it on the head? Int J Behav Nutr Phys Act. 2015;12:95. doi: 10.1186/s12966-015-0254-9.
    1. Montero D, Vinet A, Roberts CK. Effect of combined aerobic and resistance training versus aerobic training on arterial stiffness. Int J Cardiol. 2015;178:69–76. doi: 10.1016/j.ijcard.2014.10.147.
    1. Isasi CR, Parrinello CM, Ayala GX, Delamater AM, Perreira KM, Daviglus ML, et al. Sex differences in cardiometabolic risk factors among Hispanic/Latino youth. J Pediatr. 2016;176:121–127. doi: 10.1016/j.jpeds.2016.05.037.
    1. Lopez-Jaramillo P, Lahera V, Lopez-Lopez J. Epidemic of cardiometabolic diseases: a Latin American point of view. Ther Adv Cardiovasc Dis. 2011;5(2):119–131. doi: 10.1177/1753944711403189.
    1. Suárez-Ortegón MF, Arbeláez A, Mosquera M, Ramírez-Vélez R, Aguilar-De Plata C. Evaluation of the relationship between self-reported physical activity and metabolic syndrome and its components in apparently healthy women. Biomedica. 2014;34(1):60–66. doi: 10.7705/biomedica.v34i1.1442.
    1. Martínez-Torres J, Correa-Bautista JE, González-Ruíz K, Vivas A, Triana-Reina HR, Prieto-Benavidez DH, et al. A Cross-sectional study of the prevalence of metabolic syndrome and associated factors in colombian collegiate students: the FUPRECOL-adults study. Int J Environ Res Public Health. 2017;14(3):233. doi: 10.3390/ijerph14030233.
    1. Macías F, Malmusi D, Olabarría M, Borrell C. Cardiometabolic risk inequalities in Colombia. Int J Cardiol. 2016;202:156–158. doi: 10.1016/j.ijcard.2015.08.120.
    1. Ramírez-Vélez R, Meneses-Echavez JF, González-Ruíz K, Correa JE. Muscular fitness and cardiometabolic risk factors among Colombian young adults. Nutr Hosp. 2014;30(4):769–775.
    1. Dyakova EY, Kapilevich LV, Shylko VG, et al. Physical exercise associated with NO production: signaling pathways and significance in health and disease. Front Cell Dev Biol. 2015;3:19. doi: 10.3389/fcell.2015.00019.
    1. Gibala MJ, Little JP, Van Essen M, et al. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol. 2006;575:901–911. doi: 10.1113/jphysiol.2006.112094.
    1. Weston KS, Wisløff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Brit J Sport Med. 2013;48:1227–1234. doi: 10.1136/bjsports-2013-092576.
    1. A fifth amendment for the Declaration of Helsinki. Lancet 2000;356:1123.
    1. Campbell MK, Piaggio G, Elbourne DR, Altman DG, CONSORT Group Consort statement: extension to cluster randomized trials. BMJ. 2010;2012(345):e5661.
    1. Lauer M, Froelicher ES, Williams M, Kligfield P, American Heart Association Council on Clinical Cardiology, Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention Exercise testing in asymptomatic adults: a statement for professionals from the American Heart Association Council on Clinical Cardiology, Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention. Circulation. 2005;112(5):771–776. doi: 10.1161/CIRCULATIONAHA.105.166543.
    1. American College OF Sports Medicine Position stand: the recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med Sci Sports Exerc. 1998;30:975–991.
    1. Lloyd-Jones DM, Hong Y, Labarthe D, American Heart Association Strategic Planning Task Force and Statistics Committee Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association’s strategic Impact Goal through 2020 and beyond. Circulation. 2010;121:586–613. doi: 10.1161/CIRCULATIONAHA.109.192703.
    1. Álvarez C, Ramírez-Campillo R, Ramírez-Vélez R, Izquierdo M. Effects and prevalence of nonresponders after 12 weeks of high-intensity interval or resistance training in women with insulin resistance: a randomized trial. J Appl Physiol. 2017;122(4):985–996. doi: 10.1152/japplphysiol.01037.2016.
    1. Ramírez-Vélez R, Correa-Bautista JE, González-Ruíz K, Vivas A, García-Hermoso A, Triana-Reina HR. Predictive validity of the body adiposity index in overweight and obese adults using dual-energy x-ray absorptiometry. Nutrients. 2016;8(12):737. doi: 10.3390/nu8120737.
    1. Beime B, Deutsch C, Gomez T, Zwingers T, Mengden T, Bramlage P. Validation protocols for blood pressure-measuring devices: status quo and development needs. Blood Press Monit. 2016;21(1):1–8. doi: 10.1097/MBP.0000000000000150.
    1. Alberti KG, Zimmet P, Shaw J. Metabolic syndrome–a new world-wide definition. A consensus statement from the international diabetes federation. Diabet Med. 2006;23(5):469–480. doi: 10.1111/j.1464-5491.2006.01858.x.
    1. Johnson JL, Slentz CA, Houmard JA, Samsa GP, Duscha BD, Aiken LB, et al. Exercise training amount and intensity effects on metabolic syndrome (from Studies of a targeted risk reduction intervention through defined exercise) Am J Cardiol. 2007;100:1759–1766. doi: 10.1016/j.amjcard.2007.07.027.
    1. McGough JJ, Faraone SV. Estimating the size of treatment effects: moving beyond P values. Psychiatry Edgmont. 2009;6(10):21–29.
    1. Ramos JS, Dalleck LC, Borrani F, Mallard AR, Clark B, Keating SE, Fassett RG, Coombes JS. The effect of different volumes of high-intensity interval training on proinsulin in participants with the metabolic syndrome: a randomised trial. Diabetologia. 2016;59(11):2308–2320. doi: 10.1007/s00125-016-4064-7.
    1. Ramos JS, Dalleck LC, Ramos MV, Borrani F, Roberts L, Gomersall S, Beetham KS, Dias KA, Keating SE, Fassett RG, Sharman JE, Coombes JS. 12 min/week of high-intensity interval training reduces aortic reservoir pressure in individuals with metabolic syndrome: a randomized trial. J Hypertens. 2016;34(10):1977–1987. doi: 10.1097/HJH.0000000000001034.
    1. Kemmler W, Scharf M, Lell M, Petrasek C, von Stengel S. High versus moderate intensity running exercise to impact cardiometabolic risk factors: the randomized controlled RUSH-study. Biomed Res Int. 2014;2014:843095. doi: 10.1155/2014/843095.
    1. Tjønna AE, Lee SJ, Rognmo Ø, Stølen TO, Bye A, Haram PM, Loennechen JP, Al-Share QY, Skogvoll E, Slørdahl SA, Kemi OJ, Najjar SM, Wisløff U. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation. 2008;118(4):346–354. doi: 10.1161/CIRCULATIONAHA.108.772822.
    1. Johnson JL, Slentz CA, Houmard JA, Samsa GP, Duscha BD, Aiken LB, McCartney JS, Tanner CJ, Kraus WE. Exercise training amount and intensity effects on metabolic syndrome (from studies of a targeted risk reduction intervention through defined exercise) Am J Cardiol. 2007;100(12):1759–1766. doi: 10.1016/j.amjcard.2007.07.027.
    1. Earnest CP, Lupo M, Thibodaux J, Hollier C, Butitta B, Lejeune E, Johannsen NM, Gibala MJ, Church TS. Interval training in men at risk for insulin resistance. Int J Sports Med. 2013;34(4):355–363.
    1. Jelleyman C, Yates T, O’Donovan G, Gray LJ, King JA, Khunti K, Davies MJ. The effects of high-intensity interval training on glucose regulation and insulin resistance: a meta-analysis. Obes Rev. 2015;16:942–961. doi: 10.1111/obr.12317.
    1. Gordon BA, Benson AC, Bird SR, Fraser SF. Resistance training improves metabolic health in type 2 diabetes: a systematic review. Diabetes Res Clin Pract. 2009;83:157–175. doi: 10.1016/j.diabres.2008.11.024.
    1. Batacan RB, Jr, Duncan MJ, Dalbo VJ, Tucker PS, Fenning AS. Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies. Br J Sports Med. 2017;51(6):494–503. doi: 10.1136/bjsports-2015-095841.
    1. Kessler HS, Sisson SB, Short KR. The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Med. 2012;42(6):489–509. doi: 10.2165/11630910-000000000-00000.

Source: PubMed

3
Abonnere