Clearance of inflammatory cytokines in patients with septic acute kidney injury during renal replacement therapy using the EMiC2 filter (Clic-AKI study)

Nuttha Lumlertgul, Anna Hall, Luigi Camporota, Siobhan Crichton, Marlies Ostermann, Nuttha Lumlertgul, Anna Hall, Luigi Camporota, Siobhan Crichton, Marlies Ostermann

Abstract

Background: The EMiC2 membrane is a medium cut-off haemofilter (45 kiloDalton). Little is known regarding its efficacy in eliminating medium-sized cytokines in sepsis. This study aimed to explore the effects of continuous veno-venous haemodialysis (CVVHD) using the EMiC2 filter on cytokine clearance.

Methods: This was a prospective observational study conducted in critically ill patients with sepsis and acute kidney injury requiring kidney replacement therapy. We measured concentrations of 12 cytokines [Interleukin (IL) IL-1β, IL-1α, IL-2, IL-4, IL-6, IL-8, IL-10, interferon (IFN)-γ, tumour necrosis factor (TNF)-α, vascular endothelial growth factor, monocyte chemoattractant protein (MCP)-1, epidermal growth factor (EGF)] in plasma at baseline (T0) and pre- and post-dialyzer at 1, 6, 24, and 48 h after CVVHD initiation and in the effluent fluid at corresponding time points. Outcomes were the effluent and adsorptive clearance rates, mass balances, and changes in serial serum concentrations.

Results: Twelve patients were included in the final analysis. All cytokines except EGF concentrations declined over 48 h (p < 0.001). The effluent clearance rates were variable and ranged from negligible values for IL-2, IFN-γ, IL-1α, IL-1β, and EGF, to 19.0 ml/min for TNF-α. Negative or minimal adsorption was observed. The effluent and adsorptive clearance rates remained steady over time. The percentage of cytokine removal was low for most cytokines throughout the 48-h period.

Conclusion: EMiC2-CVVHD achieved modest removal of most cytokines and demonstrated small to no adsorptive capacity despite a decline in plasma cytokine concentrations. This suggests that changes in plasma cytokine concentrations may not be solely influenced by extracorporeal removal.

Trial registration: NCT03231748, registered on 27th July 2017.

Keywords: Acute kidney injury; CRRT; EMiC2 filter; Extracorporeal blood purification; High cut-off; Kidney replacement therapy; Middle cut-off; Removal; Sepsis.

Conflict of interest statement

Dr. Ostermann has received speaker honoraria and research funding from Fresenius Medical. All other authors declare no conflicts of interests.

Figures

Fig. 1
Fig. 1
Cytokine plasma concentrations expressed as a percentage of the concentration at time = 0 h. a Mean and standard error of interleukin-2 (IL-2), IL-4, IL-6, IL-8, IL-10, vascular endothelial growth factor (VEGF) concentrations. b Mean and standard error of interferon-γ (IFN-γ), tumour necrosis factor-α (TNF-α), IL-1α, IL-1β, monocyte chemoattractant protein-1 (MCP-1), epidermal growth factor (EGF)
Fig. 2
Fig. 2
The median levels of total amount of cytokine moved (Mt), expressed as a percentage of the inlet mass rate (%Mt/Mi) at t = 1, 6, 24, and 48 h after continuous veno-venous haemodialysis initiation (connected line). For each time point, the relative proportions of adsorption (%Mad/Mi, gray bars) and haemofilter clearance (%Mdf/Mi, dotted bars) are shown. a IL-2, b IL-4, c IL-6, d IL-8, e IL-10, f VEGF, g IFN-γ, h TNF-α, i IL-1α, j IL-1β, k MCP-1, l EGF

References

    1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3) JAMA. 2016;315(8):801–810. doi: 10.1001/jama.2016.0287.
    1. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med. 2017;45(3):486–552. doi: 10.1097/CCM.0000000000002255.
    1. Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int. 2019;96(5):1083–1099. doi: 10.1016/j.kint.2019.05.026.
    1. Ronco C, Tetta C, Mariano F, Wratten ML, Bonello M, Bordoni V, et al. Interpreting the mechanisms of continuous renal replacement therapy in sepsis: the peak concentration hypothesis. Artif Organs. 2003;27(9):792–801. doi: 10.1046/j.1525-1594.2003.07289.x.
    1. Ronco C. Endotoxin removal: history of a mission. Blood Purif. 2014;37(Suppl 1):5–8. doi: 10.1159/000356831.
    1. Peng ZY, Bishop JV, Wen XY, Elder MM, Zhou F, Chuasuwan A, et al. Modulation of chemokine gradients by apheresis redirects leukocyte trafficking to different compartments during sepsis, studies in a rat model. Crit Care. 2014;18(4):R141. doi: 10.1186/cc13969.
    1. Honoré PM, Matson JR. Extracorporeal removal for sepsis: acting at the tissue level–the beginning of a new era for this treatment modality in septic shock. Crit Care Med. 2004;32(3):896–897. doi: 10.1097/01.CCM.0000115262.31804.46.
    1. Rimmelé T, Kaynar AM, McLaughlin JN, Bishop JV, Fedorchak MV, Chuasuwan A, et al. Leukocyte capture and modulation of cell-mediated immunity during human sepsis: an ex vivo study. Crit Care. 2013;17(2):R59. doi: 10.1186/cc12587.
    1. Srisawat N, Tungsanga S, Lumlertgul N, Komaenthammasophon C, Peerapornratana S, Thamrongsat N, et al. The effect of polymyxin B hemoperfusion on modulation of human leukocyte antigen DR in severe sepsis patients. Crit Care. 2018;22(1):279. doi: 10.1186/s13054-018-2077-y.
    1. Atan R, Crosbie D, Bellomo R. Techniques of extracorporeal cytokine removal: a systematic review of the literature. Blood Purif. 2012;33(1–3):88–100. doi: 10.1159/000333845.
    1. Morgera S, Slowinski T, Melzer C, Sobottke V, Vargas-Hein O, Volk T, et al. Renal replacement therapy with high-cutoff hemofilters: impact of convection and diffusion on cytokine clearances and protein status. Am J Kidney Dis. 2004;43(3):444–453. doi: 10.1053/j.ajkd.2003.11.006.
    1. Haase M, Bellomo R, Baldwin I, Haase-Fielitz A, Fealy N, Davenport P, et al. Hemodialysis membrane with a high-molecular-weight cutoff and cytokine levels in sepsis complicated by acute renal failure: a phase 1 randomized trial. Am J Kidney Dis. 2007;50(2):296–304. doi: 10.1053/j.ajkd.2007.05.003.
    1. Chelazzi C, Villa G, D'Alfonso MG, Mancinelli P, Consales G, Berardi M, et al. Hemodialysis with high cut-off hemodialyzers in patients with multi-drug resistant gram-negative sepsis and acute kidney injury: a retrospective. Case-Control Study Blood Purif. 2016;42(3):186–193. doi: 10.1159/000446978.
    1. Morgera S, Haase M, Kuss T, Vargas-Hein O, Zuckermann-Becker H, Melzer C, et al. Pilot study on the effects of high cutoff hemofiltration on the need for norepinephrine in septic patients with acute renal failure. Crit Care Med. 2006;34(8):2099–2104. doi: 10.1097/01.CCM.0000229147.50592.F9.
    1. Atan R, Peck L, Visvanathan K, Skinner N, Eastwood G, Bellomo R, et al. High cut-off hemofiltration versus standard hemofiltration: effect on plasma cytokines. Int J Artif Organs. 2016;39(9):479–486. doi: 10.5301/ijao.5000527.
    1. Villa G, Chelazzi C, Morettini E, Zamidei L, Valente S, Caldini AL, et al. Organ dysfunction during continuous veno-venous high cut-off hemodialysis in patients with septic acute kidney injury: a prospective observational study. PLoS ONE. 2017;12(2):e0172039. doi: 10.1371/journal.pone.0172039.
    1. Atan R, Peck L, Prowle J, Licari E, Eastwood GM, Storr M, et al. A double-blind randomized controlled trial of high cutoff versus standard hemofiltration in critically ill patients with acute kidney injury. Crit Care Med. 2018;46(10):e988–e994. doi: 10.1097/CCM.0000000000003350.
    1. Boschetti-de-Fierro A, Voigt M, Storr M, Krause B. Extended characterization of a new class of membranes for blood purification: the high cut-off membranes. Int J Artif Organs. 2013;36(7):455–463. doi: 10.5301/ijao.5000220.
    1. Morgera S, Rocktäschel J, Haase M, Lehmann C, von Heymann C, Ziemer S, et al. Intermittent high permeability hemofiltration in septic patients with acute renal failure. Intensive Care Med. 2003;29(11):1989–1995. doi: 10.1007/s00134-003-2003-9.
    1. Jayaballa M, Bose B, Gangadharan Komala M, Fischer ER, Taper J, Sud K. Effective removal of κ-free light chains with hemodialysis using Fresenius Ultraflux® EMiC®2 dialyser in a patient with myeloma cast nephropathy, with associated cost savings. Blood Purif. 2016;42(2):158–159. doi: 10.1159/000446176.
    1. Dilken O, Ince C, van der Hoven B, Thijsse S, Ormskerk P, de Geus HRH. Successful reduction of creatine kinase and myoglobin levels in severe rhabdomyolysis using extracorporeal blood purification (CytoSorb®) Blood Purif. 2020;49(6):743–747. doi: 10.1159/000505899.
    1. Díaz-Tejeiro R, Regidor D, Morales J, Padrón M, Cueto L, Muñoz MA, et al. Acute renal failure due to rhabdomyolysis. Renal replacement therapy with intermediate cut-off membranes (EMIC2) Nefrologia. 2018;38(6):664–665. doi: 10.1016/j.nefro.2017.11.001.
    1. Lyubimova NV, Timofeeva YS, Gromova EG, Kuznetsova LS, Votyakova OM, Kushlinskii NE. Free immunoglobulin light chains as criteria of extracorporeal hemocorrection in patients with monoclonal gammopathies. Bull Exp Biol Med. 2017;163(4):493–496. doi: 10.1007/s10517-017-3836-5.
    1. Schmidt JJ, Hafer C, Clajus C, Hadem J, Beutel G, Schmidt BM, et al. New high-cutoff dialyzer allows improved middle molecule clearance without an increase in albumin loss: a clinical crossover comparison in extended dialysis. Blood Purif. 2012;34(3–4):246–252. doi: 10.1159/000342631.
    1. Weidhase L, Haussig E, Haussig S, Kaiser T, de Fallois J, Petros S. Middle molecule clearance with high cut-off dialyzer versus high-flux dialyzer using continuous veno-venous hemodialysis with regional citrate anticoagulation: a prospective randomized controlled trial. PLoS ONE. 2019;14(4):e0215823. doi: 10.1371/journal.pone.0215823.
    1. Eichhorn T, Hartmann J, Harm S, Linsberger I, König F, Valicek G, et al. Clearance of selected plasma cytokines with continuous veno-venous hemodialysis using Ultraflux EMiC2 versus Ultraflux AV1000S. Blood Purif. 2017;44(4):260–266. doi: 10.1159/000478965.
    1. Weidhase L, de Fallois J, Haußig E, Kaiser T, Mende M, Petros S. Myoglobin clearance with continuous veno-venous hemodialysis using high cutoff dialyzer versus continuous veno-venous hemodiafiltration using high-flux dialyzer: a prospective randomized controlled trial. Crit Care. 2020;24(1):644. doi: 10.1186/s13054-020-03366-8.
    1. Balgobin S, Morena M, Brunot V, Besnard N, Daubin D, Platon L, et al. Continuous veno-venous high cut-off hemodialysis compared to continuous veno-venous hemodiafiltration in intensive care unit acute kidney injury patients. Blood Purif. 2018;46(3):248–256. doi: 10.1159/000489082.
    1. Harm S, Schildböck C, Hartmann J. Cytokine removal in extracorporeal blood purification: an in vitro study. Blood Purif. 2020;49(1–2):33–43. doi: 10.1159/000502680.
    1. Ci-Ca® CVVHD with Ultraflux® EMiC®2. . Accessed 20 Oct 2020.
    1. Ricci Z, Ronco C, Bachetoni A, D'Amico G, Rossi S, Alessandri E, et al. Solute removal during continuous renal replacement therapy in critically ill patients: convection versus diffusion. Crit Care. 2006;10(2):R67. doi: 10.1186/cc4903.
    1. Heering P, Morgera S, Schmitz FJ, Schmitz G, Willers R, Schultheiss HP, et al. Cytokine removal and cardiovascular hemodynamics in septic patients with continuous venovenous hemofiltration. Intensive Care Med. 1997;23(3):288–296. doi: 10.1007/s001340050330.
    1. Hoffmann JN, Hartl WH, Deppisch R, Faist E, Jochum M, Inthorn D. Hemofiltration in human sepsis: evidence for elimination of immunomodulatory substances. Kidney Int. 1995;48(5):1563–1570. doi: 10.1038/ki.1995.448.
    1. Jekarl DW, Kim JY, Ha JH, Lee S, Yoo J, Kim M, et al. Diagnosis and prognosis of sepsis based on use of cytokines, chemokines, and growth factors. Dis Markers. 2019;2019:1089107. doi: 10.1155/2019/1089107.
    1. Kellum JA, Johnson JP, Kramer D, Palevsky P, Brady JJ, Pinsky MR. Diffusive vs. convective therapy: effects on mediators of inflammation in patient with severe systemic inflammatory response syndrome. Crit Care Med. 1998;26(12):1995–2000. doi: 10.1097/00003246-199812000-00027.
    1. Low C, Syed D, Khan D, Tetik S, Walborn A, Hoppensteadt D, et al. Modulation of interleukins in sepsis-associated clotting disorders: interplay with hemostatic derangement. Clin Appl Thromb Hemost. 2017;23(1):34–39. doi: 10.1177/1076029616659696.
    1. Lvovschi V, Arnaud L, Parizot C, Freund Y, Juillien G, Ghillani-Dalbin P, et al. Cytokine profiles in sepsis have limited relevance for stratifying patients in the emergency department: a prospective observational study. PLoS ONE. 2011;6(12):e28870. doi: 10.1371/journal.pone.0028870.
    1. Peng Z, Pai P, Hong-Bao L, Rong L, Han-Min W, Chen H. The impacts of continuous veno-venous hemofiltration on plasma cytokines and monocyte human leukocyte antigen-DR expression in septic patients. Cytokine. 2010;50(2):186–191. doi: 10.1016/j.cyto.2010.02.005.
    1. Pickkers P, Sprong T, Eijk L, Hoeven H, Smits P, Deuren M. Vascular endothelial growth factor is increased during the first 48 hours of human septic shock and correlates with vascular permeability. Shock. 2005;24(6):508–512. doi: 10.1097/01.shk.0000190827.36406.6e.
    1. van der Flier M, van Leeuwen HJ, van Kessel KP, Kimpen JL, Hoepelman AI, Geelen SP. Plasma vascular endothelial growth factor in severe sepsis. Shock. 2005;23(1):35–38. doi: 10.1097/01.shk.0000150728.91155.41.
    1. Kox M, Waalders NJB, Kooistra EJ, Gerretsen J, Pickkers P. Cytokine levels in critically ill patients with COVID-19 and other conditions. JAMA. 2020;324:1565–1567. doi: 10.1001/jama.2020.17052.
    1. Meduri GU, Headley S, Kohler G, Stentz F, Tolley E, Umberger R, et al. Persistent elevation of inflammatory cytokines predicts a poor outcome in ARDS. Plasma IL-1 beta and IL-6 levels are consistent and efficient predictors of outcome over time. Chest. 1995;107(4):1062–1073. doi: 10.1378/chest.107.4.1062.
    1. Klingensmith NJ, Chen CW, Liang Z, Burd EM, Farris AB, Arbiser JL, et al. Honokiol increases CD4+ T cell activation and decreases TNF but fails to improve survival following sepsis. Shock. 2018;50(2):178–186. doi: 10.1097/SHK.0000000000001021.
    1. Fischer KG. Essentials of anticoagulation in hemodialysis. Hemodial Int. 2007;11(2):178–189. doi: 10.1111/j.1542-4758.2007.00166.x.
    1. Jacobs R, Honoré PM, Bagshaw SM, Diltoer M, Spapen HD. Citrate formulation determines filter lifespan during continuous veno-venous hemofiltration: a prospective cohort study. Blood Purif. 2015;40(3):194–202. doi: 10.1159/000438820.
    1. Honore PM, Spapen HD. What a clinician should know about a renal replacement membrane? J Transl Int Med. 2018;6(2):62–65. doi: 10.2478/jtim-2018-0016.
    1. De Vriese AS, Colardyn FA, Philippé JJ, Vanholder RC, De Sutter JH, Lameire NH. Cytokine removal during continuous hemofiltration in septic patients. J Am Soc Nephrol. 1999;10(4):846–853.
    1. Santoro A, Guadagni G. Dialysis membrane: from convection to adsorption. NDT Plus. 2010;3(Suppl 1):i36–i39.
    1. Vaslaki L, Weber C, Mitteregger R, Falkenhagen D. Cytokine induction in patients undergoing regular online hemodiafiltration treatment. Artif Organs. 2000;24(7):514–518. doi: 10.1046/j.1525-1594.2000.06515.x.
    1. Kade G, Lubas A, Rzeszotarska A, Korsak J, Niemczyk S. Effectiveness of high cut-off hemofilters in the removal of selected cytokines in patients during septic shock accompanied by acute kidney injury-preliminary study. Med Sci Monit. 2016;22:4338–4344. doi: 10.12659/MSM.896819.
    1. Honore PM, Hoste E, Molnár Z, Jacobs R, Joannes-Boyau O, Malbrain M, et al. Cytokine removal in human septic shock: where are we and where are we going? Ann Intensive Care. 2019;9(1):56. doi: 10.1186/s13613-019-0530-y.
    1. Interleukins BV. Clinical pharmacokinetics and practical implications. Clin Pharmacokinet. 1991;21(4):274–284. doi: 10.2165/00003088-199121040-00004.
    1. Levraut J, Ciebiera JP, Jambou P, Ichai C, Labib Y, Grimaud D. Effect of continuous venovenous hemofiltration with dialysis on lactate clearance in critically ill patients. Crit Care Med. 1997;25(1):58–62. doi: 10.1097/00003246-199701000-00013.
    1. Diez-Ruiz A, Tilz GP, Zangerle R, Baier-Bitterlich G, Wachter H, Fuchs D. Soluble receptors for tumour necrosis factor in clinical laboratory diagnosis. Eur J Haematol. 1995;54(1):1–8. doi: 10.1111/j.1600-0609.1995.tb01618.x.
    1. Zhang JM, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin. 2007;45(2):27–37. doi: 10.1097/AIA.0b013e318034194e.
    1. Morgera S, Haase M, Rocktäschel J, Böhler T, von Heymann C, Vargas-Hein O, et al. High permeability haemofiltration improves peripheral blood mononuclear cell proliferation in septic patients with acute renal failure. Nephrol Dial Transplant. 2003;18(12):2570–2576. doi: 10.1093/ndt/gfg435.
    1. Morgera S, Haase M, Rocktäschel J, Böhler T, Vargas-Hein O, Melzer C, et al. Intermittent high-permeability hemofiltration modulates inflammatory response in septic patients with multiorgan failure. Nephron Clin Pract. 2003;94(3):c75–80. doi: 10.1159/000072024.

Source: PubMed

3
Abonnere