Application of metabolomics in drug resistant breast cancer research

Ayesha N Shajahan-Haq, Mehar S Cheema, Robert Clarke, Ayesha N Shajahan-Haq, Mehar S Cheema, Robert Clarke

Abstract

The metabolic profiles of breast cancer cells are different from normal mammary epithelial cells. Breast cancer cells that gain resistance to therapeutic interventions can reprogram their endogenous metabolism in order to adapt and proliferate despite high oxidative stress and hypoxic conditions. Drug resistance in breast cancer, regardless of subgroups, is a major clinical setback. Although recent advances in genomics and proteomics research has given us a glimpse into the heterogeneity that exists even within subgroups, the ability to precisely predict a tumor's response to therapy remains elusive. Metabolomics as a quantitative, high through put technology offers promise towards devising new strategies to establish predictive, diagnostic and prognostic markers of breast cancer. Along with other "omics" technologies that include genomics, transcriptomics, and proteomics, metabolomics fits into the puzzle of a comprehensive systems biology approach to understand drug resistance in breast cancer. In this review, we highlight the challenges facing successful therapeutic treatment of breast cancer and the innovative approaches that metabolomics offers to better understand drug resistance in cancer.

Figures

Figure 1
Figure 1
Metabolomics analysis of tumors depends on multiple factors associated with an individual patient.

References

    1. Warburg O., Wind F., Negelein E. The metabolism of tumors in the body. J. Gen. Physiol. 1927;8:519–530. doi: 10.1085/jgp.8.6.519.
    1. Munoz-Pinedo C., Mjiyad El.N., Ricci J.E. Cancer metabolism: Current perspectives and future directions. Cell Death Dis. 2012;3:e248. doi: 10.1038/cddis.2011.123.
    1. Vander Heiden M.G. Exploiting tumor metabolism: Challenges for clinical translation. J. Clin. Invest. 2013;123:3648–3651.
    1. Tyers M., Mann M. From genomics to proteomics. Nature. 2003;422:193–197. doi: 10.1038/nature01510.
    1. Cadoo K.A., Fornier M.N., Morris P.G. Biological subtypes of breast cancer: Current concepts and implications for recurrence patterns. Q. J. Nucl. Med. Mol. Imaging. 2013;57:312–321.
    1. Curtis C., Shah S.P., Chin S.F., Turashvili G., Rueda O.M., Dunning M.J., Speed D., Lynch A.G., Samarajiwa S., Yuan Y., et al. The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature. 2012;486:346–352.
    1. Peintinger F. Using molecular profiles to tailor treatment in breast cancer: Are they ready for prime time? Curr. Opin. Obstet. Gynecol. 2014;26:21–26. doi: 10.1097/GCO.0000000000000041.
    1. Mohammed H., Carroll J.S. Approaches for assessing and discovering protein interactions in cancer. Mol. Cancer Res. 2013;11:1295–1302. doi: 10.1158/1541-7786.MCR-13-0454.
    1. Yang M., Soga T., Pollard P.J. Oncometabolites: Linking altered metabolism with cancer. J. Clin. Invest. 2013;123:3652–3658. doi: 10.1172/JCI67228.
    1. Zhang A.H. Metabolomics in noninvasive breast cancer. Clin. Chim. Acta. 2013;424:3–7. doi: 10.1016/j.cca.2013.05.003.
    1. Zhao Y., Butler E.B., Tan M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 2013;4:e532. doi: 10.1038/cddis.2013.60.
    1. Clarke R., Ressom H.W., Wang A., Xuan J., Liu M.C., Gehan E.A., Wang Y. The properties of high-dimensional data spaces: Implications for exploring gene and protein expression data. Nat. Rev. Cancer. 2008;8:37–49. doi: 10.1038/nrc2294.
    1. Clarke R., Shajahan A.N., Riggins R.B., Cho Y., Crawford A., Xuan J., Wang Y., Zwart A., Nehra R., Liu M.C. Gene network signaling in hormone responsiveness modifies apoptosis and autophagy in breast cancer cells. J. Steroid Biochem. Mol. Biol. 2009;114:8–20. doi: 10.1016/j.jsbmb.2008.12.023.
    1. Jemal A., Bray F., Center M.M., Ferlay J., Ward E., Forman D. Global cancer statistics. CA Cancer J. Clin. 2011;61:69–90. doi: 10.3322/caac.20107.
    1. Montero A.J., Eapen S., Gorin B., Adler P. The economic burden of metastatic breast cancer: A U.S. managed care perspective. Breast Cancer Res. Treat. 2012;134:815–822. doi: 10.1007/s10549-012-2097-2.
    1. Schnipper L. Clinical implications of tumor-cell heterogeneity. N. Engl. J. Med. 1986;314:1423–1431. doi: 10.1056/NEJM198605293142206.
    1. Shah S.P., Roth A., Goya R., Oloumi A., Ha G., Zhao Y., Turashvili G., Ding J., Tse K., Haffari G., et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 2012;486:395–399.
    1. Matsen C.B., Neumayer L.A. Breast cancer: A review for the general surgeon. JAMA Surg. 2013;148:971–979. doi: 10.1001/jamasurg.2013.3393.
    1. Hammond M.E., Hayes D.F., Dowsett M., Allred D.C., Hagerty K.L., Badve S., Fitzgibbons P.L., Francis G., Goldstein N.S., Hayes M., et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J. Clin. Oncol. 2010;28:2784–2795. doi: 10.1200/JCO.2009.25.6529.
    1. Jorns J.M., Healy P., Zhao L. Review of estrogen receptor, progesterone receptor, and HER-2/neu immunohistochemistry impacts on treatment for a small subset of breast cancer patients transferring care to another institution. Arch. Pathol. Lab. Med. 2013;137:1660–1663. doi: 10.5858/arpa.2012-0670-OA.
    1. Allegra J.C., Barlock A., Huff K.K., Lippman M.E. Changes in multiple or sequential estrogen receptor determinations in breast cancer. Cancer. 1980;45:792–794. doi: 10.1002/1097-0142(19800215)45:4<792::AID-CNCR2820450430>;2-X.
    1. Liesenfeld D.B., Habermann N., Owen R.W., Scalbert A., Ulrich C.M. Review of mass spectrometry-based metabolomics in cancer research. Cancer Epidemiol. Biomarkers Prev. 2013;22:2182–2201. doi: 10.1158/1055-9965.EPI-13-0584.
    1. Van’t Veer L.J., Dai H., van de Vijver M.J., He Y.D., Hart A.A., Mao M., Peterse H.L., van der Kooy K., Marton M.J., Witteveen A.T., et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415:530–536. doi: 10.1038/415530a.
    1. Paik S., Shak S., Tang G., Kim C., Baker J., Cronin M., Baehner F.L., Walker M.G., Watson D., Park T., et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 2004;351:2817–2826. doi: 10.1056/NEJMoa041588.
    1. Anderson W.F., Chatterjee N., Ershler W.B., Brawley O.W. Estrogen receptor breast cancer phenotypes in the Surveillance, Epidemiology, and End Results database. Breast Cancer Res. Treat. 2002;76:27–36. doi: 10.1023/A:1020299707510.
    1. Clarke R., Skaar T., Baumann K., Leonessa F., James M., Lippman J., Thompson E.W., Freter C., Brunner N. Hormonal carcinogenesis in breast cancer: Cellular and molecular studies of malignant progression. Breast Cancer Res. Treat. 1994;31:237–248. doi: 10.1007/BF00666157.
    1. Fisher B., Costantino J., Redmond C., Poisson R., Bowman D., Couture J., Dimitrov N.V., Wolmark N., Wickerham D.L., Fisher E.R. A randomized clinical trial evaluating tamoxifen in the treatment of patients with node-negative breast cancer who have estrogen-receptor-positive tumors. N. Engl. J. Med. 1989;320:479–484. doi: 10.1056/NEJM198902233200802.
    1. Howell A. Selective oestrogen receptor downregulator. Eur. J. Cancer. 2002;38(Suppl. 6):S61–S62. doi: 10.1016/S0959-8049(02)00289-7.
    1. Howell A., Robertson J.F., Quaresma A.J., Aschermannova A., Mauriac L., Kleeberg U.R., Vergote I., Erikstein B., Webster A., Morris C. Fulvestrant, formerly ICI 182,780, is as effective as anastrozole in postmenopausal women with advanced breast cancer progressing after prior endocrine treatment. J. Clin. Oncol. 2002;20:3396–3403. doi: 10.1200/JCO.2002.10.057.
    1. Buzdar A., Jonat W., Howell A., Jones S.E., Blomqvist C., Vogel C.L., Eiermann W., Wolter J.M., Azab M., Webster A., et al. Anastrozole, a potent and selective aromatase inhibitor, versus megestrol acetate in postmenopausal women with advanced breast cancer: results of overview analysis of two phase III trials. Arimidex Study Group. J. Clin. Oncol. 1996;14:2000–2011.
    1. Gershanovich M., Chaudri H.A., Campos D., Lurie H., Bonaventura A., Jeffrey M., Buzzi F., Bodrogi I., Ludwig H., Reichardt P., et al. Letrozole, a new oral aromatase inhibitor: randomised trial comparing 2.5 mg daily, 0.5 mg daily and aminoglutethimide in postmenopausal women with advanced breast cancer. Letrozole International Trial Group (AR/BC3) Ann. Oncol. 1998;9:639–645. doi: 10.1023/A:1008226721932.
    1. Howell A., Buzdar A. Are aromatase inhibitors superior to antiestrogens? J. Steroid Biochem. Mol. Biol. 2005;93:237–247. doi: 10.1016/j.jsbmb.2005.02.004.
    1. Mouridsen H., Gershanovich M., Sun Y., Perez-Carrion R., Boni C., Monnier A., Apffelstaedt J., Smith R., Sleeboom H.P., Janicke F., et al. Superior efficacy of letrozole versus tamoxifen as first-line therapy for postmenopausal women with advanced breast cancer: results of a phase III study of the International Letrozole Breast Cancer Group. J. Clin. Oncol. 2001;19:2596–2606.
    1. Baselga J., Cortes J., Kim S.B., Im S.A., Hegg R., Im Y.H., Roman L., Pedrini J.L., Pienkowski T., Knott A. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N. Engl. J. Med. 2012;366:109–119. doi: 10.1056/NEJMoa1113216.
    1. Slamon D.J., Leyland-Jones B., Shak S., Fuchs H., Paton V., Bajamonde A., Fleming T., Eiermann W., Wolter J., Pegram M., et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 2001;344:783–792. doi: 10.1056/NEJM200103153441101.
    1. Geyer C.E., Forster J., Lindquist D., Chan S., Romieu C.G., Pienkowski T., Jagiello-Gruszfeld A., Crown J., Chan A., Kaufman B., et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N. Engl. J. Med. 2006;355:2733–2743. doi: 10.1056/NEJMoa064320.
    1. Verma S., Miles D., Gianni L., Krop I.E., Welslau M., Baselga J., Pegram M., Oh D.Y., Dieras V., Guardino E., et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med. 2012;367:1783–1791. doi: 10.1056/NEJMoa1209124.
    1. Mohamed A., Krajewski K., Cakar B., Ma C.X. Targeted therapy for breast cancer. Am. J. Pathol. 2013;183:1096–1112. doi: 10.1016/j.ajpath.2013.07.005.
    1. Clarke R., Skaar T.C., Bouker K.B., Davis N., Lee Y.R, Welch J.N., Leonessa F. Molecular and pharmacological aspects of antiestrogen resistance. J. Steroid Biochem. Mol. Biol. 2001;76:71–84.
    1. Clarke R., Liu M.C., Bouker K.B., Gu Z., Lee R.Y., Zhu Y., Skaar T.C., Gomez B., O’Brien K., Wang Y., et al. Antiestrogen resistance in breast cancer and the role of estrogen receptor signaling. Oncogene. 2003;22:7316–7339. doi: 10.1038/sj.onc.1206937.
    1. Frasor J., Danes J.M., Komm B., Chang K.C., Lyttle C.R., Katzenellenbogen B.S. Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype. Endocrinology. 2003;144:4562–4574. doi: 10.1210/en.2003-0567.
    1. Kong S.L., Li G., Loh S.L., Sung W.K., Liu E.T. Cellular reprogramming by the conjoint action of ERalpha, FOXA1, and GATA3 to a ligand-inducible growth state. Mol. Syst. Biol. 2011;7:526. doi: 10.1038/msb.2011.59.
    1. Loi S., Piccart M., Sotiriou C. The use of gene-expression profiling to better understand the clinical heterogeneity of estrogen receptor positive breast cancers and tamoxifen response. Crit. Rev. Oncol. Hematol. 2007;61:187–194. doi: 10.1016/j.critrevonc.2006.09.005.
    1. Mohammed H., D’Santos C., Serandour A.A., Ali H.R., Brown G.D., Atkins A., Rueda O.M., Holmes K.A., Theodorou V., Robinson JL, et al. Endogenous purification reveals GREB1 as a key estrogen receptor regulatory factor. Cell Rep. 2013;3:342–349. doi: 10.1016/j.celrep.2013.01.010.
    1. Romond E.H., Perez E.A., Bryant J., Suman V.J., Geyer C.E., Jr., Davidson N.E., Tan-Chiu E., Martino S., Paik S., Kaufman P.A., et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 2005;353:1673–1684. doi: 10.1056/NEJMoa052122.
    1. Criscitiello C., Azim H.A., Jr., Schouten P.C., Linn S.C., Sotiriou C. Understanding the biology of triple-negative breast cancer. Ann. Oncol. 2012;23(Suppl. 6):VI13–VI18. doi: 10.1093/annonc/mds188.
    1. Ward P.S., Thompson C.B. Signaling in control of cell growth and metabolism. Cold Spring Harb. Perspect. Biol. 2012;4:a006783. doi: 10.1101/cshperspect.a006783.
    1. Ward P.S., Thompson C.B. Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell. 2012;21:297–308. doi: 10.1016/j.ccr.2012.02.014.
    1. Clarke R., Shajahan A.N., Wang Y., Tyson J.J., Riggins R.B., Weiner L.M., Bauman W.T., Xuan J., Zhang B., Facey C., et al. Endoplasmic reticulum stress, the unfolded protein response, and gene network modeling in antiestrogen resistant breast cancer. Horm. Mol. Biol. Clin. Investig. 2011;5:35–44.
    1. Clarke R., Cook K.L., Hu R., Facey C.O., Tavassoly I., Schwartz J.L., Baumann W.T., Tyson J.J., Xuan J., Wang Y., et al. Endoplasmic reticulum stress, the unfolded protein response, autophagy, and the integrated regulation of breast cancer cell fate. Cancer Res. 2012;72:1321–1331. doi: 10.1158/1538-7445.AM2012-1321.
    1. Riggins R.B., Bouton A.H., Liu M.C., Clarke R. Antiestrogens, aromatase inhibitors, and apoptosis in breast cancer. Vitam. Horm. 2005;71:201–237.
    1. Bouker K.B., Skaar T.C., Fernandez D.R., O’Brien K.A., Riggins R.B., Cao D., Clarke R. interferon regulatory factor-1 mediates the proapoptotic but not cell cycle arrest effects of the steroidal antiestrogen ICI 182,780 (faslodex, fulvestrant) Cancer Res. 2004;64:4030–4039. doi: 10.1158/0008-5472.CAN-03-3602.
    1. Cook K.L., Shajahan A.N., Warri A., Jin L., Hilakivi-Clarke L.A., Clarke R. Glucose-regulated protein 78 controls cross-talk between apoptosis and autophagy to determine antiestrogen responsiveness. Cancer Res. 2012;72:3337–3349. doi: 10.1158/0008-5472.CAN-12-0269.
    1. Crawford A.C., Riggins R.B., Shajahan A.N., Zwart A., Clarke R. Co-inhibition of BCL-W and BCL2 restores antiestrogen sensitivity through BECN1 and promotes an autophagy-associated necrosis. PLoS One. 2010;5:e8604. doi: 10.1371/journal.pone.0008604.
    1. Gomez B.P., Riggins R.B., Shajahan A.N., Klimach U., Wang A., Crawford A.C., Zhu Y., Zwart A., Wang M., Clarke R. Human X-box binding protein-1 confers both estrogen independence and antiestrogen resistance in breast cancer cell lines. FASEB J. 2007;21:4013–4027. doi: 10.1096/fj.06-7990com.
    1. Nehra R., Riggins R.B., Shajahan A.N., Zwart A., Crawford A.C., Clarke R. BCL2 and CASP8 regulation by NF-kappaB differentially affect mitochondrial function and cell fate in antiestrogen-sensitive and -resistant breast cancer cells. FASEB J. 2010;24:2040–2055. doi: 10.1096/fj.09-138305.
    1. Riggins R.B., Zwart A., Nehra R., Clarke R. The nuclear factor kappa B inhibitor parthenolide restores ICI 182,780 (Faslodex; fulvestrant)-induced apoptosis in antiestrogen-resistant breast cancer cells. Mol. Cancer Ther. 2005;4:33–41. doi: 10.1186/1476-4598-4-33.
    1. Shajahan A.N., Wang A., Decker M., Minshall R.D., Liu M.C., Clarke R. Caveolin-1 tyrosine phosphorylation enhances paclitaxel-mediated cytotoxicity. J. Biol. Chem. 2007;282:5934–5943. doi: 10.1074/jbc.M608857200.
    1. Shajahan A.N., Dobbin Z.C., Hickman F.E., Dakshanamurthy S., Clarke R. Tyrosine-phosphorylated caveolin-1 (Tyr-14) increases sensitivity to paclitaxel by inhibiting BCL2 and BCLxL proteins via c-Jun N-terminal kinase (JNK) J. Biol. Chem. 2012;287:17682–17692. doi: 10.1074/jbc.M111.304022.
    1. Miller T.W., Balko J.M., Ghazoui Z., Dunbier A., Anderson H., Dowsett M., Gonzalez-Angulo A.M., Mills G.B., Miller W.R., Wu H., et al. A gene expression signature from human breast cancer cells with acquired hormone independence identifies MYC as a mediator of antiestrogen resistance. Clin. Cancer Res. 2011;17:2024–2034. doi: 10.1158/1078-0432.CCR-10-2567.
    1. Musgrove E.A., Sergio C.M., Loi S., Inman C.K., Anderson L.R., Alles M.C., Pinese M., Caldon C.E., Schutte J., Gardiner-Garden M., et al. Identification of functional networks of estrogen- and c-Myc-responsive genes and their relationship to response to tamoxifen therapy in breast cancer. PLoS One. 2008;3:e2987. doi: 10.1371/journal.pone.0002987.
    1. Wang J., Yin Y., Hua H., Li M., Luo T., Xu L., Wang R., Liu D., Zhang Y., Jiang Y. Blockade of GRP78 sensitizes breast cancer cells to microtubules-interfering agents that induce the unfolded protein response. J. Cell Mol. Med. 2009;13:3888–3897. doi: 10.1111/j.1582-4934.2009.00873.x.
    1. Hart L.S., Cunningham J.T., Datta T., Dey S., Tameire F., Lehman S.L., Qiu B., Zhang H., Cerniglia G., Bi M., et al. ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. J. Clin. Invest. 2012;122:4621–4634. doi: 10.1172/JCI62973.
    1. Shajahan-Haq A.N., Cook K.L., Schwartz-Roberts J.L., Eltayeb A.E., Demas D.M., Warri A.M., Facey C.O., Hilakivi-Clarke L.A., Clarke R. MYC regulates the unfolded protein response and glucose and glutamine uptake in endocrine resistant breast cancer. Mol. Cancer. 2014;13:239. doi: 10.1186/1476-4598-13-239.
    1. Deyati A., Younesi E., Hofmann-Apitius M., Novac N. Challenges and opportunities for oncology biomarker discovery. Drug Discov. Today. 2013;18:614–624. doi: 10.1016/j.drudis.2012.12.011.
    1. Armitage E.G., Barbas C. Metabolomics in cancer biomarker discovery: Current trends and future perspectives. J. Pharm. Biomed. Anal. 2014;87:1–11. doi: 10.1016/j.jpba.2013.08.041.
    1. Yin P., Xu G. Metabolomics for tumor marker discovery and identification based on chromatography-mass spectrometry. Expert Rev. Mol. Diagn. 2013;13:339–348. doi: 10.1586/erm.13.23.
    1. Gupta S., Chawla K. Oncometabolomics in cancer research. Expert Rev. Proteomics. 2013;10:325–336. doi: 10.1586/14789450.2013.828947.
    1. Wood S.L., Westbrook J.A., Brown J.E. Omic-profiling in breast cancer metastasis to bone: implications for mechanisms, biomarkers and treatment. Cancer Treat. Rev. 2014;40:139–152. doi: 10.1016/j.ctrv.2013.07.006.
    1. Duarte I.F., Gil A.M. Metabolic signatures of cancer unveiled by NMR spectroscopy of human biofluids. Prog. Nucl. Magn. Reson. Spectrosc. 2012;62:51–74. doi: 10.1016/j.pnmrs.2011.11.002.
    1. Kumar V., Dwivedi D.K., Jagannathan N.R. High-resolution NMR spectroscopy of human body fluids and tissues in relation to prostate cancer. NMR Biomed. 2014;27:80–89. doi: 10.1002/nbm.2979.
    1. Williams M.D., Reeves R., Resar L.S., Hill H.H., Jr. Metabolomics of colorectal cancer: past and current analytical platforms. Anal. Bioanal. Chem. 2013;405:5013–5030. doi: 10.1007/s00216-013-6777-5.
    1. Blekherman G., Laubenbacher R., Cortes D.F., Mendes P., Torti F.M., Akman S., Torti S.V., Shulaev V. Bioinformatics tools for cancer metabolomics. Metabolomics. 2011;7:329–343. doi: 10.1007/s11306-010-0270-3.
    1. Johnson C.H., Gonzalez F.J. Challenges and opportunities of metabolomics. J. Cell Physiol. 2012;227:2975–2981. doi: 10.1002/jcp.24002.
    1. Zhou B., Xiao J.F., Tuli L., Ressom H.W. LC-MS-based metabolomics. Mol. Biosyst. 2012;8:470–481. doi: 10.1039/c1mb05350g.
    1. Mamas M., Dunn W.B., Neyses L., Goodacre R. The role of metabolites and metabolomics in clinically applicable biomarkers of disease. Arch. Toxicol. 2011;85:5–17. doi: 10.1007/s00204-010-0609-6.
    1. Vermeersch K.A., Styczynski M.P. Applications of metabolomics in cancer research. J. Carcinog. 2013;12:9. doi: 10.4103/1477-3163.113622.
    1. Hsu P.P., Sabatini D.M. Cancer cell metabolism: Warburg and beyond. Cell. 2008;134:703–707. doi: 10.1016/j.cell.2008.08.021.
    1. Locasale J.W., Vander Heiden M.G., Cantley L.C. Rewiring of glycolysis in cancer cell metabolism. Cell Cycle. 2010;9:4253. doi: 10.4161/cc.9.21.13925.
    1. Munoz-Pinedo C., El M.N., Ricci J.E. Cancer metabolism: Current perspectives and future directions. Cell Death Dis. 2012;3:e248. doi: 10.1038/cddis.2011.123.
    1. Vander Heiden M.G., Locasale J.W., Swanson K.D., Sharfi H., Heffron G.J., Amador-Noguez D., Christofk H.R., Wagner G., Rabinowitz J.D., Asara J.M., et al. Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science. 2010;329:1492–1499. doi: 10.1126/science.1188015.
    1. Vander Heiden M.G. Exploiting tumor metabolism: Challenges for clinical translation. J. Clin. Invest. 2013;123:3648–3651. doi: 10.1172/JCI72391.
    1. Asiago V.M., Alvarado L.Z., Shanaiah N., Gowda G.A., Owusu-Sarfo K., Ballas R.A., Raftery D. Early detection of recurrent breast cancer using metabolite profiling. Cancer Res. 2010;70:8309–8318. doi: 10.1158/0008-5472.CAN-10-1319.
    1. Cadoo K.A., Fornier M.N., Morris P.G. Biological subtypes of breast cancer: current concepts and implications for recurrence patterns. Q. J. Nucl. Med. Mol. Imaging. 2013;57:312–321.
    1. Curtis C., Shah S.P., Chin S.F., Turashvili G., Rueda O.M., Dunning M.J., Speed D., Lynch A.G., Samarajiwa S., Yuan Y. The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature. 2012;486:346–352.
    1. Finley L.W., Carracedo A., Lee J., Souza A., Egia A., Zhang J., Teruya-Feldstein J., Moreira P.I., Cardoso S.M., Clish C.B., et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell. 2011;19:416–428. doi: 10.1016/j.ccr.2011.02.014.
    1. Weljie A.M., Bondareva A., Zang P., Jirik F.R. 1H NMR metabolomics identification of markers of hypoxia-induced metabolic shifts in a breast cancer model system. J. Biomol. NMR. 2011;49:185–193. doi: 10.1007/s10858-011-9486-4.
    1. Budczies J., Brockmoller S.F., Muller B.M., Barupal D.K., Richter-Ehrenstein C., Kleine-Tebbe A., Griffin J.L., Oresic M., Dietel M., Denkert C., et al. Comparative metabolomics of estrogen receptor positive and estrogen receptor negative breast cancer: Alterations in glutamine and beta-alanine metabolism. J. Proteomics. 2013;94:279–288. doi: 10.1016/j.jprot.2013.10.002.
    1. Jobard E., Pontoizeau C., Blaise B.J., Bachelot T., Elena-Herrmann B., Tredan O. A serum nuclear magnetic resonance-based metabolomic signature of advanced metastatic human breast cancer. Cancer Lett. 2014;343:33–41. doi: 10.1016/j.canlet.2013.09.011.
    1. Qiu Y., Zhou B., Su M., Baxter S., Zheng X., Zhao X., Yen Y., Jia W. Mass spectrometry-based quantitative metabolomics revealed a distinct lipid profile in breast cancer patients. Int. J. Mol. Sci. 2013;14:8047–8061. doi: 10.3390/ijms14048047.
    1. Bayet-Robert M., Morvan D. Metabolomics reveals metabolic targets and biphasic responses in breast cancer cells treated by curcumin alone and in association with docetaxel. PLoS One. 2013;8:e57971. doi: 10.1371/journal.pone.0057971.
    1. Brauer H.A., Makowski L., Hoadley K.A., Casbas-Hernandez P., Lang L.J., Roman-Perez E., D’Arcy M., Freemerman A.J., Perou C.M., Troester M.A. Impact of tumor microenvironment and epithelial phenotypes on metabolism in breast cancer. Clin. Cancer Res. 2013;19:571–585. doi: 10.1158/1078-0432.CCR-12-2123.
    1. Mandujano-Tinoco E.A., Gallardo-Perez J.C., Marin-Hernandez A., Moreno-Sanchez R., Rodriguez-Enriquez S. Anti-mitochondrial therapy in human breast cancer multi-cellular spheroids. Biochim. Biophys. Acta. 2013;1833:541–551. doi: 10.1016/j.bbamcr.2012.11.013.
    1. Wei S., Liu L., Zhang J., Bowers J., Gowda G.A., Seeger H., Fehm T., Neubauer H.J., Vogel U., Clare S.E., et al. Metabolomics approach for predicting response to neoadjuvant chemotherapy for breast cancer. Mol. Oncol. 2013;7:297–307. doi: 10.1016/j.molonc.2012.10.003.
    1. Budczies J. Remodeling of central metabolism in invasive breast cancer compared to normal breast tissue—a GC-TOFMS based metabolomics study. BMC Genomics. 2012 doi: 10.1186/1471-2164-13-334.
    1. Martinez-Outschoorn U.E., Prisco M., Ertel A., Tsirigos A., Lin Z., Pavlides S., Wang C., Flomenberg N., Knudsen E.S., Howell A., et al. Ketones and lactate increase cancer cell “stemness,” driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics. Cell Cycle. 2011;10:1271–1286. doi: 10.4161/cc.10.8.15330.
    1. Yang M., Soga T., Pollard P.J., Adam J. The emerging role of fumarate as an oncometabolite. Front. Oncol. 2012;2:85. doi: 10.3389/fonc.2012.00085.
    1. Turcan S., Rohle D., Goenka A., Walsh L.A., Fang F., Yilmaz E., Campos C., Fabius A.W., Lu C., Ward P.S., et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012;483:479–483. doi: 10.1038/nature10866.
    1. Jain M., Nilsson R., Sharma S., Madhusudhan N., Kitami T., Souza A.L., Kafri R., Kirschner M.W., Clish C.B., Mootha V.K. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science. 2012;336:1040–1044. doi: 10.1126/science.1218595.
    1. Claudino W.M., Goncalves P.H., Di L.A., Philip P.A., Sarkar F.H. Metabolomics in cancer: A bench-to-bedside intersection. Crit. Rev. Oncol. Hematol. 2012;84:1–7. doi: 10.1016/j.critrevonc.2012.02.009.
    1. Nordstrom A., Lewensohn R. Metabolomics: Moving to the clinic. J. Neuroimmune Pharmacol. 2010;5:4–17. doi: 10.1007/s11481-009-9156-4.
    1. O’Connell T.M. Recent advances in metabolomics in oncology. Bioanalysis. 2012;4:431–451. doi: 10.4155/bio.11.326.
    1. Benjamin D.I., Cravatt B.F., Nomura D.K. Global profiling strategies for mapping dysregulated metabolic pathways in cancer. Cell Metab. 2012;16:565–577. doi: 10.1016/j.cmet.2012.09.013.
    1. Chou H.C., Chan H.L. Targeting proteomics to investigate metastasis-associated mitochondrial proteins. J. Bioenerg. Biomembr. 2012;44:629–634. doi: 10.1007/s10863-012-9466-8.
    1. Ma Y., Zhang P., Yang Y., Wang F., Qin H. Metabolomics in the fields of oncology: A review of recent research. Mol. Biol. Rep. 2012;39:7505–7511. doi: 10.1007/s11033-012-1584-1.
    1. Cao B., Li M., Zha W., Zhao Q., Gu R., Liu L., Shi J., Zhou J., Zhou F., Wu X., et al. Metabolomic approach to evaluating adriamycin pharmacodynamics and resistance in breast cancer cells. Metabolomics. 2013;9:960–973. doi: 10.1007/s11306-013-0517-x.
    1. Tsai I.L., Kuo T.C., Ho T.J., Harn Y.C., Wang S.Y., Fu W.M., Kuo C.H., Tseng Y.J. Metabolomic Dynamic Analysis of Hypoxia in MDA-MB-231 and the Comparison with Inferred Metabolites from Transcriptomics Data. Cancers. 2013;5:491–510. doi: 10.3390/cancers5020491.
    1. Morvan D. Functional metabolomics uncovers metabolic alterations associated to severe oxidative stress in MCF7 breast cancer cells exposed to ascididemin. Mar. Drugs. 2013;11:3846–3860. doi: 10.3390/md11103846.
    1. Bayet-Robert M., Morvan D. Metabolomics reveals metabolic targets and biphasic responses in breast cancer cells treated by curcumin alone and in association with docetaxel. PLoS One. 2013;8:e57971. doi: 10.1371/journal.pone.0057971.
    1. Jager W., Gruber A., Giessrigl B., Krupitza G., Szekeres T., Sonntag D. Metabolomic analysis of resveratrol-induced effects in the human breast cancer cell lines MCF-7 and MDA-MB-231. OMICS. 2011;15:9–14. doi: 10.1089/omi.2010.0114.
    1. Slupsky C.M., Steed H., Wells T.H., Dabbs K., Schepansky A., Capstick V., Faught W., Sawyer M.B. Urine metabolite analysis offers potential early diagnosis of ovarian and breast cancers. Clin. Cancer Res. 2010;16:5835–5841. doi: 10.1158/1078-0432.CCR-10-1434.
    1. Nicholson J.K., Wilson I.D., Lindon J.C. Pharmacometabonomics as an effector for personalized medicine. Pharmacogenomics. 2011;12:103–111. doi: 10.2217/pgs.10.157.
    1. Ram P.T., Mendelsohn J., Mills G.B. Bioinformatics and systems biology. Mol. Oncol. 2012;6:147–154. doi: 10.1016/j.molonc.2012.01.008.
    1. Denkert C., Bucher E., Hilvo M., Salek R., Oresic M., Griffin J., Brockmoller S., Klauschen F., Loibl S., Barupal D.K., et al. Metabolomics of human breast cancer: New approaches for tumor typing and biomarker discovery. Genome Med. 2012;4:37.
    1. Peintinger F. Using molecular profiles to tailor treatment in breast cancer: Are they ready for prime time? Curr. Opin. Obstet. Gynecol. 2014;26:21–26. doi: 10.1097/GCO.0000000000000041.
    1. Hood L., Flores M. A personal view on systems medicine and the emergence of proactive P4 medicine: Predictive, preventive, personalized and participatory. N. Biotechnol. 2012;29:613–624. doi: 10.1016/j.nbt.2012.03.004.
    1. Hood L., Auffray C. Participatory medicine: A driving force for revolutionizing healthcare. Genome Med. 2013;5:110.
    1. Hood L. Systems biology and p4 medicine: Past, present, and future. Rambam Maimonides Med. J. 2013;4:e0012. doi: 10.5041/RMMJ.10112.
    1. Cesario A., Auffray C., Russo P., Hood L. P4 Medicine Needs P4 Education. Curr. Pharm. Des. 2014;20:6071–6072. doi: 10.2174/1381612820666140314145445.
    1. Bu Q., Huang Y., Yan G., Cen X., Zhao Y.L. Metabolomics: A revolution for novel cancer marker identification. Comb. Chem. High Throughput Screen. 2012;15:266–275. doi: 10.2174/138620712799218563.
    1. Wang J.H., Byun J., Pennathur S. Analytical approaches to metabolomics and applications to systems biology. Semin. Nephrol. 2010;30:500–511. doi: 10.1016/j.semnephrol.2010.07.007.
    1. Casado-Vela J., Cebrian A., Gomez del Pulgar M.T., Lacal J.C. Approaches for the study of cancer: Towards the integration of genomics, proteomics and metabolomics. Clin. Transl. Oncol. 2011;13:617–628. doi: 10.1007/s12094-011-0707-9.
    1. Fan T.W., Lorkiewicz P.K., Sellers K., Moseley H.N., Higashi R.M., Lane A.N. Stable isotope-resolved metabolomics and applications for drug development. Pharmacol. Ther. 2012;133:366–391. doi: 10.1016/j.pharmthera.2011.12.007.
    1. Xiao J.F., Zhou B., Ressom H.W. Metabolite identification and quantitation in LC-MS/MS-based metabolomics. Trends Analyt. Chem. 2012;32:1–14. doi: 10.1016/j.trac.2011.08.009.
    1. Ganapathy-Kanniappan S., Geschwind J.F. Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol. Cancer. 2013;12:152. doi: 10.1186/1476-4598-12-152.
    1. DeBerardinis R.J., Cheng T. Q’s next: The diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 2010;29:313–324. doi: 10.1038/onc.2009.358.
    1. Lu C.W., Lin S.C., Chen K.F., Lai Y.Y., Tsai S.J. Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. J. Biol. Chem. 2008;283:28106–28114. doi: 10.1074/jbc.M803508200.
    1. Fanciulli M., Bruno T., Giovannelli A., Gentile F.P., Di P.M., Rubiu O., Floridi A. Energy metabolism of human LoVo colon carcinoma cells: Correlation to drug resistance and influence of lonidamine. Clin. Cancer Res. 2000;6:1590–1597.
    1. Bonnet S., Archer S.L., Allalunis-Turner J., Haromy A., Beaulieu C., Thompson R., Lee C.T., Lopaschuk G.D., Puttagunta L., Bonnet S., et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007;11:37–51. doi: 10.1016/j.ccr.2006.10.020.
    1. Horecker B.L. The pentose phosphate pathway. J. Biol. Chem. 2002;277:47965–47971. doi: 10.1074/jbc.X200007200.
    1. Estrela J.M., Ortega A., Obrador E. Glutathione in cancer biology and therapy. Crit. Rev. Clin. Lab. Sci. 2006;43:143–181. doi: 10.1080/10408360500523878.
    1. Backos D.S., Franklin C.C., Reigan P. The role of glutathione in brain tumor drug resistance. Biochem. Pharmacol. 2012;83:1005–1012. doi: 10.1016/j.bcp.2011.11.016.
    1. Xu X., Zur H.A., Coy J.F., Lochelt M. Transketolase-like protein 1 (TKTL1) is required for rapid cell growth and full viability of human tumor cells. Int. J. Cancer. 2009;124:1330–1337. doi: 10.1002/ijc.24078.
    1. Monteleone F., Rosa R., Vitale M., D’Ambrosio C., Succoio M., Formisano L., Nappi L., Romano M.F., Scaloni A., Tortora G., et al. Increased anaerobic metabolism is a distinctive signature in a colorectal cancer cellular model of resistance to antiepidermal growth factor receptor antibody. Proteomics. 2013;13:866–877. doi: 10.1002/pmic.201200303.
    1. Zhao F., Mancuso A., Bui T.V., Tong X., Gruber J.J., Swider C.R., Sanchez P.V., Lum J.J., Sayed N., Melo J.V., et al. Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1alpha-induced metabolic reprograming. Oncogene. 2010;29:2962–2972. doi: 10.1038/onc.2010.67.
    1. Chen J., Zhang S., Li Y., Tang Z., Kong W. Hexokinase 2 overexpression promotes the proliferation and survival of laryngeal squamous cell carcinoma. Tumor Biol. 2013;35:3743–3753. doi: 10.1007/s13277-013-1496-2.
    1. Gershon T.R., Crowther A.J., Tikunov A., Garcia I., Annis R., Yuan H., Miller C.R., Macdonald J., Olson J., Deshmukh M. Hexokinase-2-mediated aerobic glycolysis is integral to cerebellar neurogenesis and pathogenesis of medulloblastoma. Cancer Metab. 2013 doi: 10.1186/2049-3002-1-2.
    1. Puzone R., Savarino G., Salvi S., Dal Bello M.G., Barletta G., Genova C., Rijavec E., Sini C., Esposito A.I., Ratto G.B., et al. Glyceraldehyde-3-phosphate dehydrogenase gene over expression correlates with poor prognosis in non small cell lung cancer patients. Mol. Cancer. 2013;12:97. doi: 10.1186/1476-4598-12-97.
    1. Jacquin M.A., Chiche J., Zunino B., Beneteau M., Meynet O., Pradelli L.A., Marchetti S., Cornille A., Carles M., Ricci J.E. GAPDH binds to active Akt, leading to Bcl-xL increase and escape from caspase-independent cell death. Cell Death Differ. 2013;20:1043–1054. doi: 10.1038/cdd.2013.32.
    1. Christofk H.R., Vander Heiden M.G., Harris M.H., Ramanathan A., Gerszten R.E., Wei R., Fleming M.D., Schreiber S.L., Cantley L.C. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008;452:230–233. doi: 10.1038/nature06734.
    1. Luo W., Semenza G.L. Pyruvate kinase M2 regulates glucose metabolism by functioning as a coactivator for hypoxia-inducible factor 1 in cancer cells. Oncotarget. 2011;2:551–556.
    1. Hussien R., Brooks G.A. Mitochondrial and plasma membrane lactate transporter and lactate dehydrogenase isoform expression in breast cancer cell lines. Physiol. Genomics. 2011;43:255–264. doi: 10.1152/physiolgenomics.00177.2010.
    1. Csibi A., Blenis J. Appetite for destruction: the inhibition of glycolysis as a therapy for tuberous sclerosis complex-related tumors. BMC Biol. 2011;9:69. doi: 10.1186/1741-7007-9-69.
    1. Kim S.K., Jung W.H., Koo J.S. Differential expression of enzymes associated with serine/glycine metabolism in different breast cancer subtypes. PLoS One. 2014;9:e101004. doi: 10.1371/journal.pone.0101004.

Source: PubMed

3
Abonnere