An Online Intervention Comparing a Very Low-Carbohydrate Ketogenic Diet and Lifestyle Recommendations Versus a Plate Method Diet in Overweight Individuals With Type 2 Diabetes: A Randomized Controlled Trial

Laura R Saslow, Ashley E Mason, Sarah Kim, Veronica Goldman, Robert Ploutz-Snyder, Hovig Bayandorian, Jennifer Daubenmier, Frederick M Hecht, Judith T Moskowitz, Laura R Saslow, Ashley E Mason, Sarah Kim, Veronica Goldman, Robert Ploutz-Snyder, Hovig Bayandorian, Jennifer Daubenmier, Frederick M Hecht, Judith T Moskowitz

Abstract

Background: Type 2 diabetes is a prevalent, chronic disease for which diet is an integral aspect of treatment. In our previous trial, we found that recommendations to follow a very low-carbohydrate ketogenic diet and to change lifestyle factors (physical activity, sleep, positive affect, mindfulness) helped overweight people with type 2 diabetes or prediabetes improve glycemic control and lose weight. This was an in-person intervention, which could be a barrier for people without the time, flexibility, transportation, social support, and/or financial resources to attend.

Objective: The aim was to determine whether an online intervention based on our previous recommendations (an ad libitum very low-carbohydrate ketogenic diet with lifestyle factors; "intervention") or an online diet program based on the American Diabetes Associations' "Create Your Plate" diet ("control") would improve glycemic control and other health outcomes among overweight individuals with type 2 diabetes.

Methods: In this pilot feasibility study, we randomized overweight adults (body mass index ≥25) with type 2 diabetes (glycated hemoglobin [HbA1c] 6.5%-9.0%) to a 32-week online intervention based on our previous recommendations (n=12) or an online diet program based around a plate method diet (n=13) to assess the impact of each intervention on glycemic control and other health outcomes. Primary and secondary outcomes were analyzed by mixed-effects linear regression to compare outcomes by group.

Results: At 32 weeks, participants in the intervention group reduced their HbA1c levels more (estimated marginal mean [EMM] -0.8%, 95% CI -1.1% to -0.6%) than participants in the control group (EMM -0.3%, 95% CI -0.6% to 0.0%; P=.002). More than half of the participants in the intervention group (6/11, 55%) lowered their HbA1c to less than 6.5% versus 0% (0/8) in the control group (P=.02). Participants in the intervention group lost more weight (EMM -12.7 kg, 95% CI -16.1 to -9.2 kg) than participants in the control group (EMM -3.0 kg, 95% CI -7.3 to 1.3 kg; P<.001). A greater percentage of participants lost at least 5% of their body weight in the intervention (10/11, 90%) versus the control group (2/8, 29%; P=.01). Participants in the intervention group lowered their triglyceride levels (EMM -60.1 mg/dL, 95% CI -91.3 to -28.9 mg/dL) more than participants in the control group (EMM -6.2 mg/dL, 95% CI -46.0 to 33.6 mg/dL; P=.01). Dropout was 8% (1/12) and 46% (6/13) for the intervention and control groups, respectively (P=.07).

Conclusions: Individuals with type 2 diabetes improved their glycemic control and lost more weight after being randomized to a very low-carbohydrate ketogenic diet and lifestyle online program rather than a conventional, low-fat diabetes diet online program. Thus, the online delivery of these very low-carbohydrate ketogenic diet and lifestyle recommendations may allow them to have a wider reach in the successful self-management of type 2 diabetes.

Trial registration: ClinicalTrials.gov NCT01967992; https://ichgcp.net/clinical-trials-registry/NCT01967992 (Archived by WebCite at http://www.webcitation.org/6o0fI9Mkq).

Keywords: diet; eHealth; type 2 diabetes mellitus; weight loss.

Conflict of interest statement

Conflicts of Interest: Frederick Hecht is on the Scientific Advisory Board for Virta Health. No other author declares any conflict of interest.

©Laura R Saslow, Ashley E Mason, Sarah Kim, Veronica Goldman, Robert Ploutz-Snyder, Hovig Bayandorian, Jennifer Daubenmier, Frederick M Hecht, Judith T Moskowitz. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 13.02.2017.

Figures

Figure 1
Figure 1
Study participant flowchart for online study.
Figure 2
Figure 2
Mean and individual body weight (in kilograms) for the intervention and control groups at baseline and at 16 and 32 weeks. Bars represent 95% confidence intervals of the mean. Dashed lines reflect individual participants; darker lines represent each group mean.
Figure 3
Figure 3
Mean and individual body weight (in kilograms) for the intervention and control groups at baseline and at 16 and 32 weeks. Bars represent 95% confidence intervals of the mean. Dashed lines reflect individual participants; darker lines represent each group mean.
Figure 4
Figure 4
Body weight and HbA1c plotted for each participant separately for each of the three time periods (0, 16, and 32 weeks). Red lines represent the intervention participants; blue lines represent the control participants. Lines that end in an O reflect dropouts (and missing data). Lines that end in an arrow show participants who completed the study.

References

    1. American DA. Economic costs of diabetes in the US in 2012. Diabetes Care. 2013 Apr;36(4):1033–1046. doi: 10.2337/dc12-2625.
    1. Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, Lin JK, Farzadfar F, Khang Y, Stevens GA, Rao M, Ali MK, Riley LM, Robinson CA, Ezzati M, Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose) National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants. Lancet. 2011 Jul 2;378(9785):31–40. doi: 10.1016/S0140-6736(11)60679-X.
    1. Feinman RD, Pogozelski WK, Astrup A, Bernstein RK, Fine EJ, Westman EC, Accurso A, Frassetto L, Gower BA, McFarlane SI, Nielsen JV, Krarup T, Saslow L, Roth KS, Vernon MC, Volek JS, Wilshire GB, Dahlqvist A, Sundberg R, Childers A, Morrison K, Manninen AH, Dashti HM, Wood RJ, Wortman J, Worm N. Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base. Nutrition. 2015 Jan;31(1):1–13. doi: 10.1016/j.nut.2014.06.011.
    1. Volek JS, Phinney SD, Forsythe CE, Quann EE, Wood RJ, Puglisi MJ, Kraemer WJ, Bibus DM, Fernandez ML, Feinman RD. Carbohydrate restriction has a more favorable impact on the metabolic syndrome than a low fat diet. Lipids. 2009 Apr;44(4):297–309. doi: 10.1007/s11745-008-3274-2.
    1. Ruskin DN, Masino SA. The nervous system and metabolic dysregulation: emerging evidence converges on ketogenic diet therapy. Front Neurosci. 2012;6:33. doi: 10.3389/fnins.2012.00033. doi: 10.3389/fnins.2012.00033.
    1. Bistrian BR, Blackburn GL, Flatt JP, Sizer J, Scrimshaw NS, Sherman M. Nitrogen metabolism and insulin requirements in obese diabetic adults on a protein-sparing modified fast. Diabetes. 1976 Jun;25(6):494–504.
    1. Dashti HM, Mathew TC, Khadada M, Al-Mousawi M, Talib H, Asfar SK, Behbahani AI, Al-Zaid NS. Beneficial effects of ketogenic diet in obese diabetic subjects. Mol Cell Biochem. 2007 Aug;302(1-2):249–256. doi: 10.1007/s11010-007-9448-z.
    1. Kirk JK, Graves DE, Craven TE, Lipkin EW, Austin M, Margolis KL. Restricted-carbohydrate diets in patients with type 2 diabetes: a meta-analysis. J Am Diet Assoc. 2008 Jan;108(1):91–100. doi: 10.1016/j.jada.2007.10.003.
    1. Nielsen JV, Joensson E. Low-carbohydrate diet in type 2 diabetes. Stable improvement of bodyweight and glycemic control during 22 months follow-up. Nutr Metab (Lond) 2006;3:22. doi: 10.1186/1743-7075-3-22.
    1. Accurso A, Bernstein RK, Dahlqvist A, Draznin B, Feinman RD, Fine EJ, Gleed A, Jacobs DB, Larson G, Lustig RH, Manninen AH, McFarlane SI, Morrison K, Nielsen JV, Ravnskov U, Roth KS, Silvestre R, Sowers JR, Sundberg R, Volek JS, Westman EC, Wood RJ, Wortman J, Vernon MC. Dietary carbohydrate restriction in type 2 diabetes mellitus and metabolic syndrome: time for a critical appraisal. Nutr Metab (Lond) 2008;5:9. doi: 10.1186/1743-7075-5-9.
    1. Santos FL, Esteves SS, da Costa PA, Yancy WS, Nunes JP. Systematic review and meta-analysis of clinical trials of the effects of low carbohydrate diets on cardiovascular risk factors. Obes Rev. 2012 Nov;13(11):1048–1066. doi: 10.1111/j.1467-789X.2012.01021.x.
    1. Markwald RR, Melanson EL, Smith MR, Higgins J, Perreault L, Eckel RH, Wright KP. Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5695–5700. doi: 10.1073/pnas.1216951110.
    1. Broussard JL, Ehrmann DA, Van CE, Tasali E, Brady MJ. Impaired insulin signaling in human adipocytes after experimental sleep restriction: a randomized, crossover study. Ann Intern Med. 2012 Oct 16;157(8):549–557. doi: 10.7326/0003-4819-157-8-201210160-00005.
    1. Spiegel K, Knutson K, Leproult R, Tasali E, Van Cauter E. Sleep loss: a novel risk factor for insulin resistance and Type 2 diabetes. J Appl Physiol (1985) 2005 Nov;99(5):2008–2019. doi: 10.1152/japplphysiol.00660.2005.
    1. Spiegel K, Tasali E, Penev P, Van CE. Brief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med. 2004 Dec 7;141(11):846–850.
    1. Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. CMAJ. 2006 Mar 14;174(6):801–809. doi: 10.1503/cmaj.051351.
    1. Saslow L, Cohn M, Moskowitz J. Positive affect interventions to reduce stress: harnessing benefit while avoiding Pollyanna. In: Gruber J, Moskowitz J, editors. The Light and Dark Sides of Positive Emotion. New York: Oxford University Press; 2014. Jan 23, pp. 515–532.
    1. Daubenmier J, Kristeller J, Hecht FM, Maninger N, Kuwata M, Jhaveri K, Lustig RH, Kemeny M, Karan L, Epel E. Mindfulness intervention for stress eating to reduce cortisol and abdominal fat among overweight and obese women: an exploratory randomized controlled study. J Obes. 2011;2011:651936. doi: 10.1155/2011/651936. doi: 10.1155/2011/651936.
    1. Daubenmier J, Moran PJ, Kristeller J, Acree M, Bacchetti P, Kemeny ME, Dallman M, Lustig RH, Grunfeld C, Nixon DF, Milush JM, Goldman V, Laraia B, Laugero KD, Woodhouse L, Epel ES, Hecht FM. Effects of a mindfulness-based weight loss intervention in adults with obesity: a randomized clinical trial. Obesity (Silver Spring) 2016 Apr;24(4):794–804. doi: 10.1002/oby.21396.
    1. Saslow LR, Kim S, Daubenmier JJ, Moskowitz JT, Phinney SD, Goldman V, Murphy EJ, Cox RM, Moran P, Hecht FM. A randomized pilot trial of a moderate carbohydrate diet compared to a very low carbohydrate diet in overweight or obese individuals with type 2 diabetes mellitus or prediabetes. PLoS One. 2014;9(4):e91027. doi: 10.1371/journal.pone.0091027.
    1. LaBrie JW, Quinlan T, Schiffman JE, Earleywine ME. Performance of alcohol and safer sex change rulers compared with readiness to change questionnaires. Psychol Addict Behav. 2005 Mar;19(1):112–115. doi: 10.1037/0893-164X.19.1.112.
    1. Bogg T, Roberts BW. Conscientiousness and health-related behaviors: a meta-analysis of the leading behavioral contributors to mortality. Psychol Bull. 2004 Nov;130(6):887–919. doi: 10.1037/0033-2909.130.6.887.
    1. Gosling SD, Rentfrow PJ, Swann WB. A very brief measure of the Big-Five personality domains. J Res Pers. 2003 Dec;37(6):504–528. doi: 10.1016/S0092-6566(03)00046-1.
    1. Gearhardt AN, Corbin WR, Brownell KD. Preliminary validation of the Yale Food Addiction Scale. Appetite. 2009 Apr;52(2):430–436. doi: 10.1016/j.appet.2008.12.003.
    1. Stice E, Telch CF, Rizvi SL. Development and validation of the Eating Disorder Diagnostic Scale: a brief self-report measure of anorexia, bulimia, and binge-eating disorder. Psychol Assess. 2000 Jun;12(2):123–131.
    1. Garber AJ, Menzel PH, Boden G, Owen OE. Hepatic ketogenesis and gluconeogenesis in humans. J Clin Invest. 1974 Oct;54(4):981–989. doi: 10.1172/JCI107839.
    1. Forsythe CE, Phinney SD, Fernandez ML, Quann EE, Wood RJ, Bibus DM, Kraemer WJ, Feinman RD, Volek JS. Comparison of low fat and low carbohydrate diets on circulating fatty acid composition and markers of inflammation. Lipids. 2008 Jan;43(1):65–77. doi: 10.1007/s11745-007-3132-7.
    1. Kristeller JL, Wolever RQ. Mindfulness-based eating awareness training for treating binge eating disorder: the conceptual foundation. Eat Disord. 2011;19(1):49–61. doi: 10.1080/10640266.2011.533605.
    1. Wolff K, Cavanaugh K, Malone R, Hawk V, Gregory BP, Davis D, Wallston K, Rothman RL. The Diabetes Literacy and Numeracy Education Toolkit (DLNET): materials to facilitate diabetes education and management in patients with low literacy and numeracy skills. Diabetes Educ. 2009;35(2):233–238. doi: 10.1177/0145721709331945.
    1. Polonsky WH, Fisher L, Earles J, Dudl RJ, Lees J, Mullan J, Jackson RA. Assessing psychosocial distress in diabetes: development of the diabetes distress scale. Diabetes Care. 2005 Mar;28(3):626–631.
    1. Roberts RE, Vernon SW. The Center for Epidemiologic Studies Depression Scale: its use in a community sample. Am J Psychiatry. 1983 Jan;140(1):41–46. doi: 10.1176/ajp.140.1.41.
    1. Fredrickson BL, Tugade MM, Waugh CE, Larkin GR. What good are positive emotions in crises? A prospective study of resilience and emotions following the terrorist attacks on the United States on September 11th, 2001. J Pers Soc Psychol. 2003 Feb;84(2):365–376.
    1. Bartone PT, Ursano RJ, Wright KM, Ingraham LH. The impact of a military air disaster on the health of assistance workers. A prospective study. J Nerv Ment Dis. 1989 Jun;177(6):317–328.
    1. Ware JE, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992 Jun;30(6):473–483.
    1. Yusof A, Iahad N. Review on online and mobile weight loss management system for overcoming obesity. International Conference on Computer & Information Science (ICCIS); June 12-14, 2012; Kuala Lumpur, Malaysia. 2012. pp. 198–203.
    1. Laing BY, Mangione CM, Tseng C, Leng M, Vaisberg E, Mahida M, Bholat M, Glazier E, Morisky DE, Bell DS. Effectiveness of a smartphone application for weight loss compared with usual care in overweight primary care patients: a randomized, controlled trial. Ann Intern Med. 2014 Nov 18;161(10 Suppl):S5–S12. doi: 10.7326/M13-3005.
    1. Taylor RW, Roy M, Jospe MR, Osborne HR, Meredith-Jones KJ, Williams SM, Brown RC. Determining how best to support overweight adults to adhere to lifestyle change: protocol for the SWIFT study. BMC Public Health. 2015;15:861. doi: 10.1186/s12889-015-2205-4.
    1. Willis EA, Szabo-Reed AN, Ptomey LT, Steger FL, Honas JJ, Al-Hihi EM, Lee R, Vansaghi L, Washburn RA, Donnelly JE. Distance learning strategies for weight management utilizing social media: A comparison of phone conference call versus social media platform. Rationale and design for a randomized study. Contemp Clin Trials. 2016 Feb 12;47:282–288. doi: 10.1016/j.cct.2016.02.005.
    1. Sepah SC, Jiang L, Peters AL. Translating the diabetes prevention program into an online social network: validation against CDC standards. Diabetes Educ. 2014 Apr 10;40(4):435–443. doi: 10.1177/0145721714531339.
    1. Thomas JG, Leahey TM, Wing RR. An automated internet behavioral weight-loss program by physician referral: a randomized controlled trial. Diabetes Care. 2015 Jan;38(1):9–15. doi: 10.2337/dc14-1474.
    1. Glasgow RE, Kurz D, King D, Dickman JM, Faber AJ, Halterman E, Woolley T, Toobert DJ, Strycker LA, Estabrooks PA, Osuna D, Ritzwoller D. Twelve-month outcomes of an Internet-based diabetes self-management support program. Patient Educ Couns. 2012 Apr;87(1):81–92. doi: 10.1016/j.pec.2011.07.024.
    1. Lorig K, Ritter PL, Laurent DD, Plant K, Green M, Jernigan VB, Case S. Online diabetes self-management program: a randomized study. Diabetes Care. 2010 Jun;33(6):1275–1281. doi: 10.2337/dc09-2153.
    1. Mayer SB, Jeffreys AS, Olsen MK, McDuffie JR, Feinglos MN, Yancy WS. Two diets with different haemoglobin A1c and antiglycaemic medication effects despite similar weight loss in type 2 diabetes. Diabetes Obes Metab. 2014 Jan;16(1):90–93. doi: 10.1111/dom.12191.
    1. Stern L, Iqbal N, Seshadri P, Chicano KL, Daily DA, McGrory J, Williams M, Gracely EJ, Samaha FF. The effects of low-carbohydrate versus conventional weight loss diets in severely obese adults: one-year follow-up of a randomized trial. Ann Intern Med. 2004 May 18;140(10):778–785.
    1. Samaha FF, Iqbal N, Seshadri P, Chicano KL, Daily DA, McGrory J, Williams T, Williams M, Gracely EJ, Stern L. A low-carbohydrate as compared with a low-fat diet in severe obesity. N Engl J Med. 2003 May 22;348(21):2074–2081. doi: 10.1056/NEJMoa022637.
    1. Hussain TA, Mathew TC, Dashti AA, Asfar S, Al-Zaid N, Dashti HM. Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes. Nutrition. 2012 Oct;28(10):1016–1021. doi: 10.1016/j.nut.2012.01.016.
    1. Yancy WS, Foy M, Chalecki AM, Vernon MC, Westman EC. A low-carbohydrate, ketogenic diet to treat type 2 diabetes. Nutr Metab (Lond) 2005 Dec 01;2:34. doi: 10.1186/1743-7075-2-34.
    1. Westman EC, Yancy WS, Mavropoulos JC, Marquart M, McDuffie JR. The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus. Nutr Metab (Lond) 2008;5:36. doi: 10.1186/1743-7075-5-36.
    1. Shai I, Schwarzfuchs D, Henkin Y, Shahar DR, Witkow S, Greenberg I, Golan R, Fraser D, Bolotin A, Vardi H, Tangi-Rozental O, Zuk-Ramot R, Sarusi B, Brickner D, Schwartz Z, Sheiner E, Marko R, Katorza E, Thiery J, Fiedler GM, Blüher M, Stumvoll M, Stampfer MJ, Dietary Intervention Randomized Controlled Trial (DIRECT) Group Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med. 2008 Jul 17;359(3):229–241. doi: 10.1056/NEJMoa0708681.
    1. Daly ME, Paisey R, Paisey R, Millward BA, Eccles C, Williams K, Hammersley S, MacLeod KM, Gale TJ. Short-term effects of severe dietary carbohydrate-restriction advice in Type 2 diabetes--a randomized controlled trial. Diabet Med. 2006 Jan;23(1):15–20. doi: 10.1111/j.1464-5491.2005.01760.x.
    1. Tay J, Luscombe-Marsh ND, Thompson CH, Noakes M, Buckley JD, Wittert GA, Yancy WS, Brinkworth GD. Comparison of low- and high-carbohydrate diets for type 2 diabetes management: a randomized trial. Am J Clin Nutr. 2015 Oct;102(4):780–790. doi: 10.3945/ajcn.115.112581.
    1. Yancy WS, Vernon MC, Westman EC. A pilot trial of a low-carbohydrate, ketogenic diet in patients with type 2 diabetes. Metab Syndr Relat Disord. 2003 Sep;1(3):239–243. doi: 10.1089/154041903322716723.
    1. Davis NJ, Tomuta N, Schechter C, Isasi CR, Segal-Isaacson CJ, Stein D, Zonszein J, Wylie-Rosett J. Comparative study of the effects of a 1-year dietary intervention of a low-carbohydrate diet versus a low-fat diet on weight and glycemic control in type 2 diabetes. Diabetes Care. 2009 Jul;32(7):1147–1152. doi: 10.2337/dc08-2108.
    1. Dyson PA, Beatty S, Matthews DR. A low-carbohydrate diet is more effective in reducing body weight than healthy eating in both diabetic and non-diabetic subjects. Diabet Med. 2007 Dec;24(12):1430–1435. doi: 10.1111/j.1464-5491.2007.02290.x.
    1. Vernon MC, Mavropoulos J, Transue M, Yancy WS, Westman EC. Clinical experience of a carbohydrate-restricted diet: effect on diabetes mellitus. Metab Syndr Relat Disord. 2003 Sep;1(3):233–237. doi: 10.1089/154041903322716714.
    1. Iqbal N, Vetter ML, Moore RH, Chittams JL, Dalton-Bakes CV, Dowd M, Williams-Smith C, Cardillo S, Wadden TA. Effects of a low-intensity intervention that prescribed a low-carbohydrate vs a low-fat diet in obese, diabetic participants. Obesity (Silver Spring) 2010 Sep;18(9):1733–1738. doi: 10.1038/oby.2009.460. doi: 10.1038/oby.2009.460.
    1. Nielsen JV, Joensson EA. Low-carbohydrate diet in type 2 diabetes: stable improvement of bodyweight and glycemic control during 44 months follow-up. Nutr Metab (Lond) 2008;5:14. doi: 10.1186/1743-7075-5-14.
    1. Guldbrand H, Dizdar B, Bunjaku B, Lindström T, Bachrach-Lindström M, Fredrikson M, Ostgren CJ, Nystrom FH. In type 2 diabetes, randomisation to advice to follow a low-carbohydrate diet transiently improves glycaemic control compared with advice to follow a low-fat diet producing a similar weight loss. Diabetologia. 2012 Aug;55(8):2118–2127. doi: 10.1007/s00125-012-2567-4.

Source: PubMed

3
Abonnere