Effects of a mixed berry beverage on cognitive functions and cardiometabolic risk markers; A randomized cross-over study in healthy older adults

Anne Nilsson, Ilkka Salo, Merichel Plaza, Inger Björck, Anne Nilsson, Ilkka Salo, Merichel Plaza, Inger Björck

Abstract

Background: Berries and associated bioactive compounds, e.g. polyphenols and dietary fibre (DF), may have beneficial implications with respect to the metabolic syndrome, including also cognitive functions. The aim of this study was to evaluate effects on cognitive functions and cardiometabolic risk markers of 5 wk intervention with a mixture of berries, in healthy humans.

Methods: Forty healthy subjects between 50-70 years old were provided a berry beverage based on a mixture of berries (150g blueberries, 50g blackcurrant, 50g elderberry, 50g lingonberries, 50g strawberry, and 100g tomatoes) or a control beverage, daily during 5 weeks in a randomized crossover design. The control beverage (water based) was matched with respect to monosaccharides, pH, and volume. Cognitive tests included tests of working memory capacity, selective attention, and psychomotor reaction time. Cardiometabolic test variables investigated were blood pressure, fasting blood concentrations of glucose, insulin, blood lipids, inflammatory markers, and markers of oxidative stress.

Results: The daily amounts of total polyphenols and DF from the berry beverage were 795 mg and 11g, respectively. There were no polyphenols or DF in the control beverage. The berry intervention reduced total- and LDL cholesterol compared to baseline (both P<0.05), and in comparison to the control beverage (P<0.005 and P<0.01, respectively). The control beverage increased glucose concentrations (P<0.01) and tended to increase insulin concentrations (P = 0.064) from base line, and increased insulin concentrations in comparison to the berry beverage (P<0.05). Subjects performed better in the working memory test after the berry beverage compared to after the control beverage (P<0.05). No significant effects on the other test variables were observed.

Conclusions: The improvements in cardiometabolic risk markers and cognitive performance after the berry beverage suggest preventive potential of berries with respect to type 2 diabetes, cardiovascular disease, and associated cognitive decline. Possibly the polyphenols and DF contributed to the beneficial effects.

Trial registration: ClinicalTrials.gov: NCT01562392.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. CONSORT flow diagram of the…
Fig 1. CONSORT flow diagram of the study progress.
Fig 2. Chromatograms and amperograms corresponding to…
Fig 2. Chromatograms and amperograms corresponding to the HPLC-DAD-ECD-CAD analysis of berry beverage at 280 nm, 350 nm and 520 nm and amperogram.
P, phenolic compounds; F, flavonols; and A, anthocyanins.

References

    1. Li W, Huang E. An Update on Type 2 Diabetes Mellitus as a Risk Factor for Dementia. J Alzheimers Dis. 2016;53(2):393–402. doi:
    1. Taylor VH, MacQueen GM. Cognitive dysfunction associated with metabolic syndrome. Obes Rev. 2007;8(5):409–18. doi:
    1. Sparkman NL, Buchanan JB, Heyen JR, Chen J, Beverly JL, Johnson RW. Interleukin-6 facilitates lipopolysaccharide-induced disruption in working memory and expression of other proinflammatory cytokines in hippocampal neuronal cell layers. J Neurosci. 2006;26(42):10709–16. doi:
    1. Raffaitin C, Feart C, Le Goff M, Amieva H, Helmer C, Akbaraly TN, et al. Metabolic syndrome and cognitive decline in French elders: the Three-City Study. Neurology. 2011;76(6):518–25. doi:
    1. Nilsson A, Radeborg K, Bjorck I. Effects of differences in postprandial glycaemia on cognitive functions in healthy middle-aged subjects. EJCN. 2009;63(1):113–20. doi:
    1. Ye EQ, Chacko SA, Chou EL, Kugizaki M, Liu S. Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain. J Nutr. 2012;142(7):1304–13. doi:
    1. Hosseinpour-Niazi S, Mirmiran P, Amiri Z, Hosseini-Esfahani F, Shakeri N, Azizi F. Legume intake is inversely associated with metabolic syndrome in adults. Arch Iran Med. 2012;15(9):538–44.
    1. Otles S, Ozgoz S. Health effects of dietary fiber. Acta scientiarum polonorum Technologia alimentaria. 2014;13(2):191–202.
    1. Brand-Miller JC. Glycemic load and chronic disease. Nutrition Reviews. 2003;61(5 Pt 2):S49–55.
    1. Nilsson A, Tovar J, Johansson M, Radeborg K, Bjorck I. A diet based on multiple functional concepts improves cognitive performance in healthy subjects. Nutrition & metabolism. 2013;10(1):49.
    1. Erlund I, Koli R, Alfthan G, Marniemi J, Puukka P, Mustonen P, et al. Favorable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol. Am J Clin Nutr. 2008;87(2):323–31.
    1. Basu A, Du M, Leyva MJ, Sanchez K, Betts NM, Wu M, et al. Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J Nutr. 2010;140(9):1582–7. doi:
    1. Stull AJ, Cash KC, Johnson WD, Champagne CM, Cefalu WT. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. J Nutr. 2010;140(10):1764–8. doi:
    1. Devore EE, Kang JH, Breteler MM, Grodstein F. Dietary intakes of berries and flavonoids in relation to cognitive decline. Annals of neurology. 2012;72(1):135–43. doi:
    1. Singleton VL, Orthofer R, Lamuela-Raventoś RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999;299:152–78.
    1. Magalhaes LM, Segundo MA, Reis S, Lima JLFC. Methodological aspects about in vitro evaluation of antioxidant properties. Anal Chim Acta 2008;613:1–19. doi:
    1. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology & medicine. 1999;26(9–10):1231–7.
    1. Kosar M, Dorman HJD, Hiltunen R. Effect of an acid treatment on the phytochemical and antioxidant characteristic of extracts from selected Lamiaceae species. Food chemistry. 2005;91 525–33.
    1. Plaza M, Kariuki J, Turner C. Quantification of Individual Phenolic Compounds' Contribution to Antioxidant Capacity in Apple: A Novel Analytical Tool Based on Liquid Chromatography with Diode Array, Electrochemical, and Charged Aerosol Detection. J Agr Food Chem. 2014;62(2):409–18.
    1. Plaza M, Kariuki J, Turner C. Quantification of individual phenolic compounds' contribution to antioxidant capacity in apple: a novel analytical tool based on liquid chromatography with diode array, electrochemical, and charged aerosol detection. J Agric Food Chem. 2014;62(2):409–18. doi:
    1. Gorecki T, Lynen F, Szucs R, Sandra P. Universal response in liquid chromatography using charged aerosol detection. Anal Chem. 2006;78(9):3186–92. doi:
    1. de Villiers A, Gorecki T, Lynen F, Szucs R, Sandra P. Improving the universal response of evaporative light scattering detection by mobile phase compensation. Journal of Chromatography A. 2007;1161(1–2):183–91. doi:
    1. Daneman M, Carpenter PA. Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior. 1980;19:450–66.
    1. Radeborg K, Briem V, Hedman LR. The effect of concurrent task difficalty on working memory during simulated driving. Ergonomics. 1999;42:767–77.
    1. Kyllonen PC. Is working memory capacity Spearman's g? In: Dennis I, Tapsfield P, editors. Human abilities: Their nature and measurement Mahwah, NJ: Erlbaum; 1996. p. 49–75.
    1. Engle RW, Kane MJ, Tuholski SW. Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence, and functions of the prefrontal cortex In: Miake A, Shah P, editors. Models of working memory: Mechanisms of active maintenance and executive controll. New York: Cambridge University Press; 1999. p. 102–34.
    1. Chiou JF, Hu ML. Elevated lipid peroxidation and disturbed antioxidant enzyme activities in plasma and erythrocytes of patients with uterine cervicitis and myoma. Clin Biochem. 1999;32(3):189–92.
    1. Yamashita S, Kawase R, Nakaoka H, Nakatani K, Inagaki M, Yuasa-Kawase M, et al. Differential reactivities of four homogeneous assays for LDL-cholesterol in serum to intermediate-density lipoproteins and small dense LDL: comparisons with the Friedewald equation. Clin Chim Acta. 2009;410(1–2):31–8. doi:
    1. Matthews DR., Hosker, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting
    1. Perez-Jimenez J, Neveu V, Vos F, Scalbert A. Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. EJCN.64 Suppl 3:S112–20.
    1. Kähkönen MP, Heinämäki J, Ollilainen V, Heinonen M. Berry anthocyanins: Isolation, identification and antioxidant activities. Journal of the Science of Food and Agriculture. 2003;83:1403–11.
    1. Mitić MN, Obradović MV, Kostić DA, Nasković DC, Micić RJ. Phenolics content and antioxidant capacity of commercial red fruit juices. Hemijska Industrija. 2011;65:611–9.
    1. Tuberoso CI, Boban M, Bifulco E, Budimir D, Pirisi FM. Antioxidant capacity and vasodilatory properties of Mediterranean food: the case of Cannonau wine, myrtle berries liqueur and strawberry-tree honey. Food chemistry. 2013;140(4):686–91. doi:
    1. Escudero-Lopez B, Cerrillo I, Herrero-Martin G, Hornero-Mendez D, Gil-Izquierdo A, Medina S, et al. Fermented orange juice: source of higher carotenoid and flavanone contents. J Agric Food Chem. 2013;61(37):8773–82. doi:
    1. Horszwald A, Andlauer W. Characterisation of bioactive compounds in berry juices by traditional photometric and modern microplate methods. Journal of Berry Research 2011;1: 189–99.
    1. Heinonen IM, Lehtonen PJ, Hopia AI. Antioxidant Activity of Berry and Fruit Wines and Liquors. J Agric Food Chem. 1998;46(1):25–31.
    1. Stroher DJ, Escobar Piccoli Jda C, Gullich AA, Pilar BC, Coelho RP, Bruno JB, et al. 14 Days of supplementation with blueberry extract shows anti-atherogenic properties and improves oxidative parameters in hypercholesterolemic rats model. Int J Food Sci Nutr. 2015;66(5):559–68. doi:
    1. Ciocoiu M, Badescu M, Badulescu O, Badescu L. The beneficial effects on blood pressure, dyslipidemia and oxidative stress of Sambucus nigra extract associated with renin inhibitors. Pharm Biol. 2016:1–5.
    1. Park JH, Kho MC, Kim HY, Ahn YM, Lee YJ, Kang DG, et al. Blackcurrant Suppresses Metabolic Syndrome Induced by High-Fructose Diet in Rats. Evidence-based complementary and alternative medicine: eCAM. 2015;2015:385976.
    1. Gammone MA, Riccioni G, D'Orazio N. Carotenoids: potential allies of cardiovascular health? Food & nutrition research. 2015;59:26762.
    1. Molinett S, Nunez F, Moya-Leon MA, Zuniga-Hernandez J. Chilean Strawberry Consumption Protects against LPS-Induced Liver Injury by Anti-Inflammatory and Antioxidant Capability in Sprague-Dawley Rats. Evidence-based complementary and alternative medicine: eCAM. 2015;2015:320136.
    1. Mane C, Loonis M, Juhel C, Dufour C, Malien-Aubert C. Food grade lingonberry extract: polyphenolic composition and in vivo protective effect against oxidative stress. J Agric Food Chem. 2011;59(7):3330–9. doi:
    1. Rissanen TH, Voutilainen S, Virtanen JK, Venho B, Vanharanta M, Mursu J, et al. Low intake of fruits, berries and vegetables is associated with excess mortality in men: the Kuopio Ischaemic Heart Disease Risk Factor (KIHD) Study. J Nutr. 2003;133(1):199–204.
    1. Mursu J, Virtanen JK, Tuomainen TP, Nurmi T, Voutilainen S. Intake of fruit, berries, and vegetables and risk of type 2 diabetes in Finnish men: the Kuopio Ischaemic Heart Disease Risk Factor Study. Am J Clin Nutr. 2014;99(2):328–33. doi:
    1. Huang H, Chen G, Liao D, Zhu Y, Xue X. Effects of Berries Consumption on Cardiovascular Risk Factors: A Meta-analysis with Trial Sequential Analysis of Randomized Controlled Trials. Sci Rep. 2016;6:23625 doi:
    1. Edirisinghe I, Banaszewski K, Cappozzo J, Sandhya K, Ellis CL, Tadapaneni R, et al. Strawberry anthocyanin and its association with postprandial inflammation and insulin. Br J Nutr. 2011;106(6):913–22. doi:
    1. Torronen R, Kolehmainen M, Sarkkinen E, Mykkanen H, Niskanen L. Postprandial glucose, insulin, and free fatty acid responses to sucrose consumed with blackcurrants and lingonberries in healthy women. Am J Clin Nutr. 2012;96(3):527–33. doi:
    1. Torronen R, Sarkkinen E, Tapola N, Hautaniemi E, Kilpi K, Niskanen L. Berries modify the postprandial plasma glucose response to sucrose in healthy subjects. Br J Nutr. 2010;103(8):1094–7. doi:
    1. Rao AV, Rao LG. Carotenoids and human health. Pharmacol Res. 2007;55(3):207–16. doi:
    1. Wang B, Liu K, Mi M, Wang J. Effect of fruit juice on glucose control and insulin sensitivity in adults: a meta-analysis of 12 randomized controlled trials. PLoS One. 2014;9(4):e95323 doi:
    1. Kim Y, Keogh JB, Clifton PM. Polyphenols and Glycemic Control. Nutrients. 2016;8(1).
    1. Grooms KN, Ommerborn MJ, Pham DQ, Djousse L, Clark CR. Dietary fiber intake and cardiometabolic risks among US adults, NHANES 1999–2010. The American journal of medicine. 2013;126(12):1059–67 e1–4. doi:
    1. Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T, et al. Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella. Cell metabolism. 2015;22(6):971–82. doi:
    1. Nilsson AC, Johansson-Boll EV, Bjorck IM. Increased gut hormones and insulin sensitivity index following a 3-d intervention with a barley kernel-based product: a randomised cross-over study in healthy middle-aged subjects. Br J Nutr. 2015:1–9.
    1. Devore EE, Kang JH, Stampfer MJ, Grodstein F. The association of antioxidants and cognition in the Nurses' Health Study. American journal of epidemiology. 2013;177(1):33–41. doi:
    1. Krikorian R, Nash TA, Shidler MD, Shukitt-Hale B, Joseph JA. Concord grape juice supplementation improves memory function in older adults with mild cognitive impairment. Br J Nutr. 2010;103(5):730–4. doi:
    1. Krikorian R, Shidler MD, Nash TA, Kalt W, Vinqvist-Tymchuk MR, Shukitt-Hale B, et al. Blueberry supplementation improves memory in older adults. J Agric Food Chem. 2010;58(7):3996–4000. doi:
    1. Yin Q, Ma Y, Hong Y, Hou X, Chen J, Shen C, et al. Lycopene attenuates insulin signaling deficits, oxidative stress, neuroinflammation, and cognitive impairment in fructose-drinking insulin resistant rats. Neuropharmacology. 2014;86:389–96. doi:
    1. Zhao WQ, Alkon DL. Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol. 2001;177(1–2):125–34.
    1. Faria A, Meireles M, Fernandes I, Santos-Buelga C, Gonzalez-Manzano S, Duenas M, et al. Flavonoid metabolites transport across a human BBB model. Food chemistry. 2014;149:190–6. doi:
    1. Parkar SG, Trower TM, Stevenson DE. Fecal microbial metabolism of polyphenols and its effects on human gut microbiota. Anaerobe. 2013;23:12–9. doi:
    1. Cani PD, Everard A, Duparc T. Gut microbiota, enteroendocrine functions and metabolism. Curr Opin Pharmacol. 2013;13(6):935–40. doi:
    1. McIntyre RS, Powell AM, Kaidanovich-Beilin O, Soczynska JK, Alsuwaidan M, Woldeyohannes HO, et al. The neuroprotective effects of GLP-1: Possible treatments for cognitive deficits in individuals with mood disorders. Behav Brain Res. 2012.
    1. Pounis G, Bonaccio M, Di Castelnuovo A, Costanzo S, de Curtis A, Persichillo M, et al. Polyphenol intake is associated with low-grade inflammation, using a novel data analysis from the Moli-sani study. Thromb Haemost. 2015;115(2).
    1. Chen L, Xin X, Yuan Q, Su D, Liu W. Phytochemical properties and antioxidant capacities of various colored berries. J Sci Food Agric. 2014;94(2):180–8. doi:
    1. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–7. doi:
    1. Bielli A, Scioli MG, Mazzaglia D, Doldo E, Orlandi A. Antioxidants and vascular health. Life Sci. 2015;143:209–16. doi:
    1. Spencer JP, Vafeiadou K, Williams RJ, Vauzour D. Neuroinflammation: modulation by flavonoids and mechanisms of action. Molecular aspects of medicine. 2012;33(1):83–97. doi:

Source: PubMed

3
Abonnere