Pregnancy eating attributes study (PEAS): a cohort study examining behavioral and environmental influences on diet and weight change in pregnancy and postpartum

Tonja R Nansel, Leah M Lipsky, Anna Maria Siega-Riz, Kyle Burger, Myles Faith, Aiyi Liu, Tonja R Nansel, Leah M Lipsky, Anna Maria Siega-Riz, Kyle Burger, Myles Faith, Aiyi Liu

Abstract

Background: The rising prevalence of maternal overweight/obesity and excessive gestational weight gain poses a serious public health concern due to the contribution of these factors to increased risk of negative health outcomes for both mother and child. Scant intervention research has indicated moderate short-term improvement in maternal diet and gestational weight gain, with little evidence of long-term behavior change, in parallel with findings from interventions outside of pregnancy. Recent laboratory-based findings from neuroscience implicate aberrant reward processing of food at the brain level ("food reward sensitivity," the between-individual variation in the response to food stimuli) as a contributor to eating beyond energy needs. However, scant research has examined the influence of these processes on weight change in population-based settings, and the relevance of these processes to pregnancy-related weight change has not been explored. The purpose of the Pregnancy Eating Attributes Study (PEAS) is to examine the role of food reward sensitivity in maternal diet and weight change during pregnancy and postpartum. The study examines the interplay of food reward sensitivity with behavioral control, home food environment, and related aspects of eating behavior in the context of weight-related biomedical, psychosocial, genetic and behavioral factors including physical activity, stress, sleep and depression.

Methods: Women of varying baseline weight status (n = 450) are enrolled early in pregnancy and followed, along with their infants, until 1 year postpartum. Assessments occur during each trimester of pregnancy, and postpartum at approximately 2 months, 6 months, 9 months and 12 months. Maternal food reward, self-control, home food environment, eating behaviors, dietary intake, health behaviors, and anthropometrics are assessed along with maternal and infant clinical and biological data, infant anthropometrics, and feeding practices. Primary exposures of interest include food reward sensitivity, behavioral control, and home food environment. Primary outcomes include gestational weight gain, postpartum weight retention and maternal diet quality.

Discussion: With increasing evidence suggesting the relevance of food reward sensitivity for understanding eating behavior, PEAS aims to advance understanding of the determinants of eating behavior during pregnancy, informing future interventions for improving maternal diet and weight change, and leading to improved maternal and child health and weight trajectories.

Trial registration: Clinicaltrials.gov, NCT02217462. Date of registration: August 13, 2014.

Keywords: Diet; Eating behavior; Food reward sensitivity; Gestational weight gain; Postpartum weight retention; Pregnancy.

Figures

Fig. 1
Fig. 1
Pregnancy Eating Attributes Study (PEAS) conceptual model

References

    1. Institute of Medicine (US) and National Research Council (US) Committee to Reexamine IOM Pregnancy Weight Guidelines . In: Weight gain during pregnancy: reexamining the guidelines. Rasmussen KM, Yaktine AL, editors. National Academies Press; Washington DC: 2009.
    1. Baeten JM, Bukusi EA, Lambe M. Pregnancy complications and outcomes among overweight and obese nulliparous women. Am J Public Health. 2001;91(3):436–40.
    1. Bodner K, Wierrani F, Grunberger W, Bodner-Adler B. Influence of the mode of delivery on maternal and neonatal outcomes: a comparison between elective cesarean section and planned vaginal delivery in a low-risk obstetric population. Arch Gynecol Obstet. 2011;283(6):1193–8. doi:10.1007/ s00404-010-1525-y.
    1. Callaway LK, Prins JB, Chang AM, McIntyre HD. The prevalence and impact of overweight and obesity in an Australian obstetric population. Med J Aust. 2006;184(2):56–9.
    1. Castro LC, Avina RL. Maternal obesity and pregnancy outcomes. Curr Opin Obstet Gynecol. 2002;14(6):601–6. doi:10.1097/01.gco.0000045486.15021.C9.
    1. Catalano PMaE HM The Short- and Long-Term Implications of Maternal Obesity on the Mother and Her Offspring. BJOG. 2006;113:1126–33.
    1. Catalano PM, Presley L, Minium J, Mouzon SH. Fetuses of Obese Mothers Develop Insulin Resistance in Utero. Diabetes Care. 2009;32:1076–80.
    1. Catalano PM. Obesity, Insulin Resistance, and Pregnancy Outcome. Reproduction. 2010;140:365–71.
    1. Chu SY, Callaghan WM, Kim SY, Schmid CH, Lau J, England LJ, Dietz PM. Maternal Obesity and Risk of Gestational Diabetes Mellitus. Daibetes Care. 2007;30:2070.
    1. O’Brien TE, Ray JG, Chan WS. Maternal Body Mass Index and the Risk of Preeclampsia: a Systematic Overview. Epidemiology. 2003;14:368–74.
    1. Owens LA, O’Sullivan E, Kirwan B, Avalos G, Gaffney G, Dunne F, et al. ATLANTIC DIP: the impact of obesity on pregnancy outcome in glucose-tolerant women. Diabetes Care. 2010;33(3):577–9. doi:10.2337/dc09-0911.
    1. Raatikainen K, Heiskanen N, Heinonen S. Transition From Overweight to Obesity Worsens Pregnancy Outcome in a BMI-Dependent Manner. Obesity (Silver Spring) 2006;14(1):165–71.
    1. Rasmussen SA, Chu SY, Kim SY, Schmid CH, Lau J. Maternal obesity and risk of neural tube defects: a metaanalysis. Am J Obstet Gynecol. 2008;198(6):611–9. doi:10.1016/j.ajog.2008.04.021.
    1. Sebire NJ, Jolly M, Harris JP, Wadsworth J, Joffe M, Beard RW, et al. Maternal obesity and pregnancy outcome: a study of 287,213 pregnancies in London. Int J Obes Relat Metab Disord. 2001;25(8):1175–82. doi:10.1038/sj.ijo.0801670.
    1. Stothard KJ, Tennant PW, Bell R, Rankin J. Maternal Overweight and Obesity and the Risk of Congenital Anomalies: a Systematic Review and Meta-Analysis. JAMA. 2009;301:636–50.
    1. Crozier SR, Inskip HM, Godfrey KM, Cooper C, Harvey NC, Cole ZA, et al. Weight gain in pregnancy and childhood body composition: findings from the Southampton Women’s Survey. Am J Clin Nutr. 2010;91(6):1745–51. doi:10.3945/ajcn.2009.29128.
    1. Pirkola J, Pouta A, Bloigu A, Hartikainen AL, Laitinen J, Jarvelin MR, et al. Risks of overweight and abdominal obesity at age 16 years associated with prenatal exposures to maternal prepregnancy overweight and gestational diabetes mellitus. Diabetes Care. 2010;33(5):1115–21. doi:10.2337/dc09-1871.
    1. Anderson AK, McDougald DM, Steiner-Asiedu M. Dietary Trans Fatty Acid Intake and Maternal and Infant Adiposity. Eur J Clin Nutr. 2010;64(11):1308–15.
    1. Bayol SA, Simbi BH, Fowkes RC, Stickland NC. A Maternal “Junk Food” Diet in Pregnancy and Lactation Promotes Nonalcoholic Fatty Liver Disease in Rat Offspring. Endocrinology. 2010;151(4):1451–61.
    1. Jones AP, Friedman MI. Obesity and Adipocyte Abnormalities in Offspring of Rats Undernourished During Pregnancy. Science. 1982;215(4539):1518–9.
    1. Laitinen J, Jaaskelainen A, Hartikainen AL, Sovio U, Vaarasmaki M, Pouta A, et al. Maternal weight gain during the first half of pregnancy and offspring obesity at 16 years: a prospective cohort study. BJOG. 2012;119(6):716–23. doi:10.1111/j.1471-0528.2012.03319.x.
    1. Robinson T, Callister M, Jankoski T. Portrayal of body weight on children’s television sitcoms: a content analysis. Body Image. 2008;5(2):141–51. doi:10. 1016/j.bodyim.2007.11.004.
    1. Simmons SF, Keeler E, Zhuo X, Hickey KA, Sato HW, Schnelle JF. Prevention of unintentional weight loss in nursing home residents: a controlled trial of feeding assistance. J Am Geriatr Soc. 2008;56(8):1466–73. doi:10.1111/j.1532-5415.2008.01801.x.
    1. Carmichael SL, Yang W, Feldkamp ML, Munger RG, Siega-Riz AM, Botto LD, Shaw G, National Birth Defects Prevention Study Reduced Risks of Neural Tube Defects and Orofacial Clefts With Higher Diet Quality. Arch Pediatr Adolesc Med. 2012;166(2):121–6.
    1. Jensen CD, Block G, Buffler P, Ma X, Selvin S, Month S. Maternal Dietary Risk Factors in Childhood Acute Lymphoblastic Leukemia. Cancer Causes and Control. 2012;15(6):559–70.
    1. Musselman JRB, Jurek AM, Johnson KJ, Linabery AM, Robinson LL, Shu X-O, Ross JA. Maternal Dietary Patterns During Early Pregnancy and the Odds of Childhood Germ Cell Tumors: a Children’s Oncology Group Study. Am J Epidemiol. 2010;173(3):282–91.
    1. Orjuela MA, Titievsky L, Liu X, Ramirez-Ortiz M, Ponce-Castaneda V, Lecona E, Molina E, Beaverson K, Abramson DH, Mueller NE. Fruit and Vegetable Intake During Pregnancy and Risk for Development of Sporadic Retinoblastoma. Cancer Epidemiol Biomarkers Prev. 2005;14:1433–40.
    1. Petridou E, Ntouvelis E, Dessypris N, Terzidis A, Trichopoulos D, Childhood H-OG. Maternal diet and acute lymphoblastic leukemia in young children. Cancer Epidemiol Biomarkers Prev. 2005;14(8):1935–9. doi:10.1158/1055-9965.EPI-05-0090.
    1. Brekke HK, Ludvigsson J. Daily vegetable intake during pregnancy negatively associated to islet autoimmunity in the offspring–the ABIS study. Pediatr Diabetes. 2010;11(4):244–50. doi:10.1111/j.1399-5448.2009.00563.x.
    1. Chatzi L, Torrent M, Romieu I, Garcia-Esteban R, Ferrer C, Vioque J, et al. Mediterranean diet in pregnancy is protective for wheeze and atopy in childhood. Thorax. 2008;63(6):507–13. doi:10.1136/thx.2007.081745.
    1. Aagaard-Tillery KM, Grove K, Bishop J, Ke X, Fu Q, McKnight R, et al. Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome. J Mol Endocrinol. 2008;41(2):91–102. doi:10.1677/JME-08-0025.
    1. Bray GA. Risks of obesity. [Review] Endocrinol Metab Clin North Am. 2003;32(4):787–804.
    1. Centers for Disease C. Prevention State-specific trends in fruit and vegetable consumption among adults — United States, 2000-2009. MMWR Morb Mortal Wkly Rep. 2010;59(35):1125–30.
    1. Ervin RB. Healthy Eating Index–2005 total and component scores for adults aged 20 and over: National Health and Nutrition Examination Survey, 2003-2004. Natl Health Stat Rep. 2011;(44):1–9.
    1. Guenther PM, Dodd KW, Reedy J, Krebs-Smith SM. Most Americans eat much less than recommended amounts of fruits and vegetables. J Am Diet Assoc. 2006;106(9):1371–9. doi:10.1016/j.jada.2006.06.002.
    1. Guenther PM, Juan WY, Reedy J, Britten P, Lino M, Carlson A, et al. Diet quality of Americans in 1994-1996 and 2001-2002 as measured by the Healthy Eating Index-2005. FASEB J. 2008;22 (1_MeetingAbstracts):868.4.
    1. Guenther P, Juan W, Lino M, Carlson A, Hiza H, Krebs-Smith S. Diet quality of low-income and higher income Americans in 2003-04 as measured by the Healthy Eating Index-2005. United States Department of Agriculture, Center for Nutrition Policy and Promotion; Alexandria, VA: 2008.
    1. Anderson AS. Symposium on ‘Nutritional Adaptation to Pregnancy and Lactation’. Pregnancy As a Time for Dietary Change? Proc Nutr Soc. 2001;60(4):497–504.
    1. Franz M, VanWormer J, Crain A, Boucher J, Histon T, Caplan W, et al. Weight-loss outcomes: a systematic review and meta-analysis of weight-loss clinical trials with a minimum 1-year follow-up. J Am Diet Assoc. 2007;107(10):1755–67. doi:10.1016/j.jada.2007.07.017.
    1. US Department of Health and Human Services, National Heart Lung and Blood Institute Lifestyle Interventions to Reduce Cardiovascular Risk: Systematic Evidence Review from the Lifestyle Work Group. 2013;2013
    1. US Department of Health and Human Services, National Heart Lung and Blood Institute Guidelines (2013) for managing overweight and obesity in adults. Preface to the Expert Panel Report (comprehensive version which includes systematic evidence review, evidence statements, and recommendations) Obesity (Silver Spring) 2014;22(Suppl 2):S40. doi:10.1002/ oby.20822.
    1. Lowe MR, Butryn ML. Hedonic hunger: a new dimension of appetite? Physiol Behav. 2007;91(4):432–9. doi:10.1016/j.physbeh.2007.04.006.
    1. Lutter M, Nestler EJ. Homeostatic and hedonic signals interact in the regulation of food intake. J Nutr. 2009;139(3):629–32. doi:10.3945/jn.108. 097618.
    1. Stice E, Spoor S, Bohon C, Veldhuizen MG, Small DM. Relation of reward from food intake and anticipated food intake to obesity: a functional magnetic resonance imaging study. J Abnorm Psychol. 2008;117(4):924–35.
    1. Demos KE, Heatherton TF, Kelley WM. Individual differences in nucleus accumbens activity to food and sexual images predict weight gain and sexual behavior. J Neurosci. 2012;32(16):5549–52. doi:10.1523/JNEUROSCI. 5958-11.2012.
    1. Epstein LH, Leddy JJ, Temple JL, Faith MS. Food reinforcement and eating: a multilevel analysis. Psychol Bull. 2007;133(5):884–906. doi:10.1037/0033-2909. 133.5.884.
    1. Lietti CV, Murray MM, Hudry J, le Coutre J, Toepel U. The Role of Energetic Value in Dynamic rain Response Adaptation During Repeated Food Image Viewing. Appetite. 2012;58(1):11–8.
    1. Stoeckel LE, Weller RE, Cook EW, III, Twieg DB, Knowlton RC, Cox JE. Widespread Reward-System Activation in Obese Women in Response to Pictures of High-Calorie Foods. Neuroimage. 2008;41(2):636–47.
    1. Toepel U, Knebel JF, Hudry J, le Coutre J, Murray MM. The Brain Tracks the Energetic Value in Food Images. Neueroimage. 2009;44(3):967–74.
    1. Gearhardt AN, Davis C, Kuschner R, Brownell KD. The addiction potential of hyperpalatable foods. [Review] Curr Drug Abuse Rev. 2011;4(3):140–5.
    1. Gearhardt AN, Yokum S, Orr PT, Stice E, Corbin WR, Brownell KD. Neural correlates of food addiction. Arch Gen Psychiatry. 2011;68(8):88–816.
    1. Berridge KC, Kringelbach ML. Affective Neuroscience of Pleasure: Reward in Humans and Animals. Psychopharmacology (Berl) 2008;199(3):457–80.
    1. Drewnowski A, Krahn DD, Demitrack MA, Nairn K, Gosnell BA. Taste Responses and Preferences for Sweet High-Fat Foods: Evidence for Opioid Involvement. Physiol Behav. 1992;51(2):371–9.
    1. Green SM, Blundell JE. Effect of Fat- and Sucrose-Containing Foods on the Size of Eating Episodes and Energy Intake in Lean Dietary Restrained and Unrestrained Females: Potential for Causing Overconsumption. Eur J Clin Nutr. 1996;50(9):625–35.
    1. Kessler D. The end of overeating. Rodale Inc; New York: 2009.
    1. US Department of Agriculture, Agricultural Research Service What we eat in America, NHANES 2001-2002: usual nutrient intakes from food compared to dietary reference intakes. 2005
    1. McGuire S. Adv Nutr. 1. Vol. 7. US Departments of Agriculture and Health and Human Services, 2015; Washington, DC: 2016. Scientific Report of the 2015 Dietary Guidelines Advisory Committee; pp. 202–4. doi:10.3945/an.115. 011684.
    1. Fulgoni VL, Keast DR, Drewnowski A. Development and Validation of the Nutrient-Rich Foods Index: a Tool to Measure Nutritional Quality of Foods. J Nutr. 2009;139:1549–54.
    1. U.S.Department of Agriculture USDoHaHS . Dietary Guidelines for Americans, 2010. 7th US Government Printing Office Washington; Washington: 2010.
    1. Beaver J, Lawrence A, van Ditzhuijzen J, Davis M, Woods A, Calder A. Individual differences in reward drive predict neural responses to images of food. J Neurosci. 2006;26(19):5160–6. doi:10.1523/JNEUROSCI.0350-06.2006.
    1. Stice E, Yokum S, Bohon C, Marti N, Smolen A. Reward circuitry responsivity to food predicts future increases in body mass: moderating effects of DRD2 and DRD4. Neuroimage. 2010;50(4):1618–25.
    1. Rothemund Y, Preuschhof C, Bohner G, Bauknecht HC, Klingebiel R, Flor H, Klapp BF. Differential Activation of the Dorsal Striatum by High-Calorie Visual Food Stimuli in Obese Individuals. Neuroimage. 2007;37(2):410–21.
    1. Cohen DA, Sturm R, Scott M, Farley TA, Bluthenthal R. Not Enough Fruit and Vegetables or Too Many Cookies, Candies, Salty Snacks, and Soft Drinks? Public Health Rep. 2010;125(1):88–95.
    1. Burger KS, Stice E. Variability in reward responsivity and obesity: evidence from brain imaging studies. Curr Drug Abuse Rev. 2011;4(3):182–9.
    1. Robinson TE, Berridge KC. The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction. 2000;95(Suppl 2(8s2)):S91–117.
    1. Alsio J, Olszewski PK, Levine AS, Schioth HB. Feed-Forward Mechanisms: Addiction-Like Behavioral and Molecular Adaptations in Overeating. Front Neuroendocrinol. 2012;33(2):127–39.
    1. Bobroff EM, Kissileff HR. Effects of Changes in Palatability on Food Intake and the Cumulative Food Intake Curve in Man. Appetite. 1986;7(1):85–96.
    1. Clark EN, Dewey AM, Temple JL. Effects of daily snack food intake on food reinforcement depend on body mass index and energy density. Am J Clin Nutr. 2010;91(2):300–8. doi:10.3945/ajcn.2009.28632.
    1. Temple JL, Bulkley AM, Badawy RL, Krause N, McCann S, Epstein LH. Differential effects of daily snack food intake on the reinforcing value of food in obese and nonobese women. Am J Clin Nutr. 2009;90(2):304–13.
    1. Teegarden SL, Scott AN, Bale TL. Early life exposure to a high fat diet promotes long-term changes in dietary preferences and central reward signaling. Neuroscience. 2009;162(4):924–32. doi:10.1016/j.neuroscience.2009.05.029.
    1. Burger KS, Stice E. Frequent Ice Cream Consumption Is Associated With Reduced Striatal Response to Receipt of an Ice Cream-Based Milkshake. Am J Clin Nutr. 2012;95(4):810–7.
    1. Clark EN, Dewey AM, Temple JL. Effects of daily snack food intake on food reinforcement depend on body mass index and energy density. Am J Clin Nutr. 2010;91(2):300–8.
    1. Hetherington MM, Pirie LM, Nabb S. Stimulus satiation: effects of repeated exposure to foods on pleasantness and intake. Appetite. 2002;38(1):19–28. doi:10.1006/appe.2001.0442.
    1. Temple JL, Chappel A, Shalik J, Volcy S, Epstein LH. Daily consumption of individual snack foods decreases their reinforcing value. Eat Behav. 2008;9(3):267–76. doi:10.1016/j.eatbeh.2007.10.001.
    1. Tey SL, Brown RC, Gray AR, Chisholm AW, Delahunty CM. Long-term consumption of high energy-dense snack foods on sensory-specific satiety and intake. Am J Clin Nutr. 2012;95(5):1038–47. doi:10.3945/ajcn.111.030882.
    1. Guerrieri R, Nederkoorn C, Jansen A. How impulsiveness and variety influence food intake in a sample of healthy women. Appetite. 2007;48(1):119–22. doi:10.1016/j.appet.2006.06.004.
    1. Guerrieri R, Nederkoorn C, Stankiewicz K, Alberts H, Geschwind N, Martijn C, et al. The influence of trait and induced state impulsivity on food intake in normal-weight healthy women. Appetite. 2007;49(1):66–73. doi:10.1016/j. appet.2006.11.008.
    1. Bonato DP, Boland FJ. Delay of gratification in obese children. Addict Behav. 1983;8(1):71–4.
    1. Nederkoorn C, Braet C, Van Eijs Y, Tanghe A, Jansen A. Why obese children cannot resist food: the role of impulsivity. Eat Behav. 2006;7(4):315–22. doi: 10.1016/j.eatbeh.2005.11.005.
    1. Nederkoorn C, Smulders FT, Havermans RC, Roefs A, Jansen A. Impulsivity in obese women. Appetite. 2006;47(2):253–6. doi:10.1016/j.appet.2006.05.008.
    1. Appelhans BMWK, Pagoto SL, Schneider KL, Whited MC, Liebman R. Inhibiting food reward: delay discounting, food reward sensitivity, and palatable food intake in overweight and obese women. Obesity (Silver Spring) 2011;19(11):2175–82.
    1. Rollins BY, Dearing KK, Epstein LH. Delay discounting moderates the effect of food reinforcement on energy intake among non-obese women. Appetite. 2010;55(3):420–5. doi:10.1016/j.appet.2010.07.014.
    1. Epstein LH, Lin H, Carr KA, Fletcher KD. Food reinforcement and obesity. Psychological moderators. Appetite. 2012;58(1):157–62. doi:10.1016/j.appet. 2011.09.025.
    1. Goldfield GS, Lumb A. Effects of dietary restraint and body mass index on the relative reinforcing value of snack food. Eat Disord. 2009;17(1):46–62. doi:10.1080/10640260802570106.
    1. Lowe MR. Self-regulation of energy intake in the prevention and treatment of obesity: is it feasible? Obes Res. 2003;11(Suppl):44S–59S.
    1. Mumford SL, Siega-Riz AM, Herring A, Evenson KR. Dietary restraint and gestational weight gain. J Am Diet Assoc. 2008;108(10):1646–53.
    1. Kerr KL, Avery JA, Barcalow JC, Moseman SE, Bodurka J, Bellgowan PS, et al. Trait impulsivity is related to ventral ACC and amygdala activity during primary reward anticipation. Soc Cogn Affect Neurosci. 2014 doi:10.1093/ scan/nsu023.
    1. Batterink L, Yokum S, Stice E. Body mass correlates inversely with inhibitory control in response to food among adolescent girls: an fMRI study. Neuroimage. 2010;52(4):1696–703. doi:10.1016/j.neuroimage.2010.05.059.
    1. Kishinevsky FI, Cox JE, Murdaugh DL, Stoeckel LE, Cook EW, 3rd, Weller RE. fMRI reactivity on a delay discounting task predicts weight gain in obese women. Appetite. 2012;58(2):582–92. doi:10.1016/j.appet.2011.11.029.
    1. Yokum S, Ng J, Stice E. Attentional bias to food images associated with elevated weight and future weight gain: an fMRI study. Obesity (Silver Spring) 2011;19(9):1775–83. doi:10.1038/oby.2011.168.
    1. Subar AF, Kirkpatrick SI, Mittl B, Zimmerman TP, Thompson FE, Bingley C, et al. The Automated Self-Administered 24-hour dietary recall (ASA24): a resource for researchers, clinicians, and educators from the National Cancer Institute. J Acad Nutr Diet. 2012;112(8):1134–7. doi:10.1016/j.jand.2012. 04.016.
    1. Kirkpatrick SI, Subar AF, Douglass D, Zimmerman TP, Thompson FE, Kahle LL, et al. Performance of the Automated Self-Administered 24-hour Recall relative to a measure of true intakes and to an interviewer-administered 24-h recall. Am J Clin Nutr. 2014;100(1):233–40. doi:10.3945/ajcn.114.083238.
    1. Fein SB, Labiner-Wolfe J, Shealy KR, Li R, Chen J, Grummer-Strawn LM. Infant Feeding Practices Study II: study methods. Pediatrics. 2008;122(Suppl 2):S28–35. doi:10.1542/peds.2008-1315c.
    1. Sharma S, Kolahdooz F, Butler L, Budd N, Rushovich B, Mukhina GL, et al. Assessing dietary intake among infants and toddlers 0-24 months of age in Baltimore, Maryland, USA. Nutr J. 2013;12:52. doi:10.1186/1475-2891-12-52.
    1. Johnson L, Llewellyn CH, van Jaarsveld CH, Cole TJ, Wardle J. Genetic and environmental influences on infant growth: prospective analysis of the Gemini twin birth cohort. PLoS One. 2011;6(5):e19918. doi:10.1371/journal. pone.0019918.
    1. Stifter CA, Anzman-Frasca S, Birch LL, Voegtline K. Parent use of food to soothe infant/toddler distress and child weight status. An exploratory study. Appetite. 2011;57(3):693–9. doi:10.1016/j.appet.2011.08.013.
    1. Lowe MR, Butryn ML, Didie ER, Annunziato RA, Thomas JG, Crerand CE, et al. The Power of Food Scale. A new measure of the psychological influence of the food environment. Appetite. 2009;53(1):114–8. doi:10.1016/j. appet.2009.05.016.
    1. Cappelleri JC, Bushmakin AG, Gerber RA, Leidy NK, Sexton CC, Karlsson J, et al. Evaluating the Power of Food Scale in obese subjects and a general sample of individuals: development and measurement properties. Int J Obes (Lond) 2009;33(8):913–22. doi:10.1038/ijo.2009.107.
    1. Flint AJ, Gearhardt AN, Corbin WR, Brownell KD, Field AE, Rimm EB. Food-addiction scale measurement in 2 cohorts of middle-aged and older women. Am J Clin Nutr. 2014;99:578–86.
    1. Epstein LH, Salvy SJ, Carr KA, Dearing KK, Bickel WK. Food reinforcement, delay discounting and obesity. Physiol Behav. 2010;100(5):438–45. doi:10. 1016/j.physbeh.2010.04.029.
    1. Griffiths RR, Troisi JR, Silverman K. Mumford GK. Multiple-choice procedure: an efficient approach for investigating drug reinforcement in humans. Behav Pharmacol. 1993;4(1):3–13.
    1. Van Strien T, Frijters JER, Bergers JPA, Defares PB. The Dutch Eating Behavior Questionnaire (DEBQ) for assessment of restrained, emotional, and external eating. Int J Eat Disord. 1986;5(2):295–315. 1986.
    1. Levesque CS, Williams GC, Elliot D, Pickering MA, Bodenhamer B, Finley PJ. Validating the theoretical structure of the Treatment Self-Regulation Questionnaire (TSRQ) across three different health behaviors. Health Educ Res. 2007;22(5):691–702. doi:10.1093/her/cyl148.
    1. Lohse B, Satter E, Horacek T, Gebreselassie T, Oakland MJ. Measuring eating competence: psychometric properties and validity of the ecSatter Inventory. J Nutr Educ Behav. 2007;39(5 Suppl):S154–66. doi:10.1016/j.jneb.2007.04.371.
    1. Lim J, Wood A, Green BG. Derivation and evaluation of a labeled hedonic scale. Chem Senses. 2009;34(9):739–51. doi:10.1093/chemse/bjp054.
    1. Hoerger M, Quirk SW, Weed NC. Development and validation of the Delaying Gratification Inventory. Psychol Assess. 2011;23(3):725–38. doi:10. 1037/a0023286.
    1. Spinella M. Normative data and a short form of the Barratt Impulsiveness Scale. Int J Neurosci. 2007;117(3):359–68. doi:10.1080/00207450600588881.
    1. Fulkerson JA, Nelson MC, Lytle L, Moe S, Heitzler C, Pasch KE. The validation of a home food inventory. Int J Behav Nutr Phys Act. 2008;5:55. doi:10.1186/ 1479-5868-5-55.
    1. Stunkard AJ, Messick S. The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. J Psychosom Res. 1985;29(1):71–83.
    1. Evenson KR, Wen F. National trends in self-reported physical activity and sedentary behaviors among pregnant women: NHANES 1999-2006. Prev Med. 2010;50(3):123–8. doi:10.1016/j.ypmed.2009.12.015.
    1. Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J Health Soc Behav. 1983;24(4):385–96.
    1. Cohen S, Williamson GM. Social Psychology of Health. Sage Publications Inc; Newbury Pk: 1988. Perceived Stress in a Probability Sample of the United States.
    1. Hoch CC, Buysse DJ, Reynolds CF., 3rd Sleep and depression in late life. Clin Geriatr Med. 1989;5(2):259–74.
    1. Cox JL, Holden JM, Sagovsky R. Detection of postnatal depression. Development of the 10-item Edinburgh Postnatal Depression Scale. Br J Psychiatry. 1987;150:782–6.
    1. Guenther PM, Kirkpatrick SI, Reedy J, Krebs-Smith SM, Buckman DW, Dodd KW, et al. The Healthy Eating Index-2010 is a valid and reliable measure of diet quality according to the 2010 Dietary Guidelines for Americans. J Nutr. 2014;144(3):399–407. doi:10.3945/jn.113.183079.

Source: PubMed

3
Abonnere