Urine haptoglobin levels predict early renal functional decline in patients with type 2 diabetes

Nishant M Bhensdadia, Kelly J Hunt, Maria F Lopes-Virella, J Michael Tucker, Mohammad R Mataria, Joseph L Alge, Benjamin A Neely, Michael G Janech, John M Arthur, Veterans Affairs Diabetes Trial (VADT) study group, Nishant M Bhensdadia, Kelly J Hunt, Maria F Lopes-Virella, J Michael Tucker, Mohammad R Mataria, Joseph L Alge, Benjamin A Neely, Michael G Janech, John M Arthur, Veterans Affairs Diabetes Trial (VADT) study group

Abstract

Diabetic nephropathy is the leading cause of end-stage renal disease. The urinary albumin to creatinine ratio is used as a predictor for the development of nephropathy but it is neither sensitive nor specific. Here we used liquid chromatography/mass spectrometry on urine of eight normoalbuminuric patients with type 2 diabetes from the VA Diabetes Trial to identify candidate markers for loss of renal function. Initial verification of seven markers (agrin, haptoglobin, mannan-binding lectin serine protease 2, LAMP-2, angiotensinogen, NGAL, and uromodulin) in the urine of an additional 30 patients showed that haptoglobin was the best predictor of early renal functional decline. We then measured this in the urine of 204 patients with type 2 diabetes who did not yet have significant kidney disease (estimated glomerular filtration rate stage 2 or better and an albumin to creatinine ratio <300 mg/g). In comparing the highest to lowest tertiles, the odds ratio for having early renal function decline was 2.70 (CI: 1.15, 6.32) using the haptoglobin to creatinine ratio compared with 2.50 (CI 1.14, 5.48) using the albumin to creatinine ratio after adjusting for treatment group and use of ACE inhibitors. Addition of the haptoglobin to creatinine ratio to a model using the albumin to creatinine ratio to predict early renal function decline resulted in improved predictive performance. Thus, the haptoglobin to creatinine ratio may be useful to predict patients with type 2 diabetes at risk of nephropathy before the development of macroalbuminuria or reduced glomerular filtration rate.

Figures

Figure 1
Figure 1
Figure 2
Figure 2
Figure 3
Figure 3
Figure 4
Figure 4

References

    1. Centers for Disease Control and Prevention (CDC) Incidence of end-stage renal disease attributed to diabetes among persons with diagnosed diabetes --- United States and Puerto Rico, 1996–2007. MMWR Morb Mortal Wkly Rep. 2010;59(42):1361–1366.
    1. Cowie CC, Rust KF, Ford ES, et al. Full accounting of diabetes and pre-diabetes in the U.S. population in 1988–1994 and 2005–2006. Diabetes Care. 2009;32(2):287–294.
    1. Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861–869.
    1. Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345(12):851–860.
    1. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes. Lancet. 1998;352(9131):837–853.
    1. Mogensen CE, Christensen CK. Predicting diabetic nephropathy in insulin-dependent patients. N Engl J Med. 1984;311(2):89–93.
    1. Mogensen CE. Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med. 1984;310(6):356–360.
    1. Tabaei BP, Al-Kassab AS, Ilag LL, et al. Does microalbuminuria predict diabetic nephropathy? Diabetes Care. 2001;24(9):1560–1566.
    1. Yamada T, Komatsu M, Komiya I, et al. Development, progression, and regression of microalbuminuria in Japanese patients with type 2 diabetes under tight glycemic and blood pressure control: the Kashiwa study. Diabetes Care. 2005;28(11):2733–2738.
    1. Gaede P, Tarnow L, Vedel P, et al. Remission to normoalbuminuria during multifactorial treatment preserves kidney function in patients with type 2 diabetes and microalbuminuria. Nephrol Dial Transplant. 2004;19(11):2784–2788.
    1. Araki S, Haneda M, Sugimoto T, et al. Factors associated with frequent remission of microalbuminuria in patients with type 2 diabetes. Diabetes. 2005;54(10):2983–2987.
    1. Almdal T, Norgaard K, Feldt-Rasmussen B, Deckert T. The predictive value of microalbuminuria in IDDM. A five-year follow-up study. Diabetes Care. 1994;17(2):120–125.
    1. Pagtalunan ME, Miller PL, Jumping-Eagle S, et al. Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest. 1997;99(2):342–348.
    1. Halimi JM. The emerging concept of chronic kidney disease without clinical proteinuria in diabetic patients. Diabetes Metab. 2012
    1. Kramer HJ, Nguyen QD, Curhan G, Hsu CY. Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. JAMA. 2003;289(24):3273–3277.
    1. MacIsaac RJ, Tsalamandris C, Panagiotopoulos S, et al. Nonalbuminuric renal insufficiency in type 2 diabetes. Diabetes Care. 2004;27(1):195–200.
    1. Retnakaran R, Cull CA, Thorne KI, et al. Risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective Diabetes Study 74. Diabetes. 2006;55(6):1832–1839.
    1. Yokoyama H, Sone H, Oishi M, et al. Prevalence of albuminuria and renal insufficiency and associated clinical factors in type 2 diabetes: the Japan Diabetes Clinical Data Management study (JDDM15) Nephrol Dial Transplant. 2009;24(4):1212–1219.
    1. Afghahi H, Cederholm J, Eliasson B, et al. Risk factors for the development of albuminuria and renal impairment in type 2 diabetes--the Swedish National Diabetes Register (NDR) Nephrol Dial Transplant. 2011;26(4):1236–1243.
    1. Penno G, Solini A, Bonora E, et al. Clinical significance of nonalbuminuric renal impairment in type 2 diabetes. J Hypertens. 2011;29(9):1802–1809.
    1. Lindeman RD, Tobin J, Shock NW. Longitudinal studies on the rate of decline in renal function with age. J Am Geriatr Soc. 1985;33(4):278–285.
    1. Pavkov ME, Knowler WC, Lemley KV, et al. Early renal function decline in type 2 diabetes. Clin J Am Soc Nephrol. 2012;7(1):78–84.
    1. Perkins BA, Ficociello LH, Ostrander BE, et al. Microalbuminuria and the risk for early progressive renal function decline in type 1 diabetes. J Am Soc Nephrol. 2007;18(4):1353–1361.
    1. Perkins BA, Ficociello LH, Roshan B, et al. In patients with type 1 diabetes and new-onset microalbuminuria the development of advanced chronic kidney disease may not require progression to proteinuria. Kidney Int. 2010;77(1):57–64.
    1. Merchant ML, Klein JB. Proteomic discovery of diabetic nephropathy biomarkers. Adv Chronic Kidney Dis. 2010;17(6):480–486.
    1. Bolignano D, Lacquaniti A, Coppolino G, et al. Neutrophil gelatinase-associated lipocalin as an early biomarker of nephropathy in diabetic patients. Kidney Blood Press Res. 2009;32(2):91–98.
    1. Fu WJ, Xiong SL, Fang YG, et al. Urinary tubular biomarkers in short-term type 2 diabetes mellitus patients: a cross-sectional study. Endocrine. 2012;41(1):82–88.
    1. Nielsen SE, Schjoedt KJ, Astrup AS, et al. Neutrophil Gelatinase-Associated Lipocalin (NGAL) and Kidney Injury Molecule 1 (KIM1) in patients with diabetic nephropathy: a cross-sectional study and the effects of lisinopril. Diabet Med. 2010;27(10):1144–1150.
    1. Schlatzer D, Maahs DM, Chance MR, et al. Novel Urinary Protein Biomarkers Predicting the Development of Microalbuminuria and Renal Function Decline in Type 1 Diabetes. Diabetes Care. 2012
    1. Langlois MR, Delanghe JR. Biological and clinical significance of haptoglobin polymorphism in humans. Clin Chem. 1996;42(10):1589–1600.
    1. Lim YK, Jenner A, Ali AB, et al. Haptoglobin reduces renal oxidative DNA and tissue damage during phenylhydrazine-induced hemolysis. Kidney Int. 2000;58(3):1033–1044.
    1. Katnik I. Studies on haptoglobin binding to concanavalin A. Biochim Biophys Acta. 1984;790(1):8–14.
    1. Katnik I, Guszczynski T, Dobryszycka W. Immunological comparison of glycopeptides obtained from haptoglobin types 1-1, 2-1 and 2-2. Arch Immunol Ther Exp (Warsz) 1984;32(1):111–120.
    1. Nakhoul FM, Zoabi R, Kanter Y, et al. Haptoglobin phenotype and diabetic nephropathy. Diabetologia. 2001;44(5):602–604.
    1. Melamed-Frank M, Lache O, Enav BI, et al. Structure-function analysis of the antioxidant properties of haptoglobin. Blood. 2001;98(13):3693–3698.
    1. Weinberger MH, Miller JZ, Fineberg NS, et al. Association of haptoglobin with sodium sensitivity and resistance of blood pressure. Hypertension. 1987;10(4):443–446.
    1. D'Armiento J, Dalal SS, Chada K. Tissue, temporal and inducible expression pattern of haptoglobin in mice. Gene. 1997;195(1):19–27.
    1. Agrawal L, Azad N, Emanuele NV, et al. Observation on renal outcomes in the Veterans Affairs Diabetes Trial. Diabetes Care. 2011;34(9):2090–2094.
    1. Abraira C, Duckworth W, McCarren M, et al. Design of the cooperative study on glycemic control and complications in diabetes mellitus type 2: Veterans Affairs Diabetes Trial. J Diabetes Complications. 2003;17(6):314–322.
    1. Duckworth WC, McCarren M, Abraira C. VA Diabetes Trial: Glucose control and cardiovascular complications: the VA Diabetes Trial. Diabetes Care. 2001;24(5):942–945.
    1. Nesvizhskii AI, Keller A, Kolker E, Aebersold R. A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem. 2003;75(17):4646–4658.

Source: PubMed

3
Abonnere