Ex vivo effect of gold nanoparticles on porcine synovial membrane

Raphael Labens, B Duncan X Lascelles, Anna N Charlton, Nicole R Ferrero, Arnaud J Van Wettere, Xin-Riu Xia, Anthony T Blikslager, Raphael Labens, B Duncan X Lascelles, Anna N Charlton, Nicole R Ferrero, Arnaud J Van Wettere, Xin-Riu Xia, Anthony T Blikslager

Abstract

Gold nanoparticles (AuNPs) have great potential as carriers for local drug delivery and as a primary therapeutic for treatment of inflammation. Here we report on the AuNP-synovium interaction in an ex vivo model of intra-articular application for treatment of joint inflammation. Sheets of porcine femoropatellar synovium were obtained post mortem and each side of the tissue samples was maintained in a separate fluid environment. Permeability to AuNPs of different sizes (5-52 nm) and biomarker levels of inflammation were determined to characterize the ex vivo particle interaction with the synovium. Lipopolysaccharide or recombinant human interleukin-1β were added to fluid environments to assess the ex vivo effect of pro-inflammatory factors on permeability and biomarker levels. The synovium showed size selective permeability with only 5 nm AuNPs effectively permeating the entire tissues' width. This process was further governed by particle stability in the fluid environment. AuNPs reduced matrix metalloproteinase and lactate dehydrogenase activity and hyaluronic acid concentrations but had no effect on prostaglandin E2 levels. Exposure to pro-inflammatory factors did not significantly affect AuNP permeation or biomarker levels in this model. Results with ex vivo tissue modeling of porcine synovium support an anti-inflammatory effect of AuNPs warranting further investigation.

Keywords: arthritis; ex vivo; gold; nanogold; nanoparticles; permeability; synovitis; synovium; ussing.

Figures

https://www.ncbi.nlm.nih.gov/pmc/articles/instance/3879126/bin/tisb-1-e24314-g1.jpg
Figure 1. Experimental Protocol. (A) Schematic of the experimental groups. (B) Schematic of the experimental procedures (AuNPs = gold nanoparticles, Au = elemental gold, LPS = lipopolysaccharide, LPSV = LPS vehicle, IL-1β = interleukin-1β, IL1V = interleukin-1β vehicle, MMP = matrix metalloproteinase, LDH = lactate dehydrogenase, HA = hyaluronic acid, PGE2 = Prostaglandin E2)
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/3879126/bin/tisb-1-e24314-g2.jpg
Figure 2. Size dependent permeation of the synovial membrane assessed by histomorphometry. Bars represent the average surface area of the gold specific tissue stain (pixel2) for each size of gold nanoparticle (AuNP) used (5, 10, 20 and 52 nm). Significance was reached for all comparisons with 5 nm AuNPs (p < 0.001). Error bars represent the standard error for the mean.
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/3879126/bin/tisb-1-e24314-g3.jpg
Figure 3. Time dependent permeation of 5 nm gold nanoparticles through the synovial membrane. A significant difference in synovial AuNP permeation was observed between chambers receiving IL-1β vehicle and LPS or LPS vehicle. Significantly different permeation curves (p < 0.05) are indicated by different letters. Stars above time points indicate when and for what group sample concentrations were significantly different from baseline values. Error bars represent the standard error for the mean. (LPS = Lipopolysaccharide, IL-1β = Interleukin-1β, V = Vehicle)
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/3879126/bin/tisb-1-e24314-g4.jpg
Figure 4. Representative images of the size dependent permeation of the synovial membrane. Tissues had been exposed to (A) 5 nm AuNPs, (B) 10 nm AuNPs, (C) 20 nm AuNPs and (D) 52 nm AuNPs prior to gold enhancement. AuNPs of 5 nm size can be seen penetrating all tissue layers. Elemental gold appears black. (AuNPs = gold nanoparticles; scale bar = 50 µm)
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/3879126/bin/tisb-1-e24314-g5.jpg
Figure 5. Representative transmission electron microscopic images of AuNP localization. By enlarge AuNPs were scattered throughout the cytoplasm and organelles of synoviocytes including the smooth endoplasmatic reticulum and mitochondria (C and D). Extracellular location of large particle agglomerates were also appreciated (A and B). Evidence for larger AuNPs agglomerates in endosomes (white arrow) is illustrated in (D).
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/3879126/bin/tisb-1-e24314-g6.jpg
Figure 6. Molecular biomarkers by experimental group Group AuNP/P-Infl: Tissues exposed to AuNPs and pro-inflammatory factor; Group AuNP/V: Tissues exposed to AuNPs and vehicle; Group C/IL1V: Synovium exposed to Interleukin-1β vehicle only; Group C/IL-1β: Synovium exposed to Interleukin-1β. Error bars represent the standard error for the mean. Bars above group comparisons indicate significance (p < 0.05).
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/3879126/bin/tisb-1-e24314-g7.jpg
Figure 7. Representation of synovial ulceration. The degree of synovial ulceration was graded based on the estimated percentage of synovium missing over the length of the sample evaluated. (A) shows a representation of the synovial lining at 60 × magnification that was considered normal; a continuous lining of synovial cell is present. (B) represents tissue at the same magnification with ulceration of the synovium; a discontinuous lining of synovial cell is observed over the subsynovial connective tissue. (Bar = 30µm).

References

    1. Higby GJ. Gold in medicine: a review of its use in the West before 1900. Gold Bull. 1982;15:130–40. doi: 10.1007/BF03214618.
    1. Rau R. Have traditional DMARDs had their day? Effectiveness of parenteral gold compared to biologic agents. Clin Rheumatol. 2005;24:189–202. doi: 10.1007/s10067-004-0869-8.
    1. Hamilton J, McInnes IB, Thomson EA, Porter D, Hunter JA, Madhok R, et al. Comparative study of intramuscular gold and methotrexate in a rheumatoid arthritis population from a socially deprived area. Ann Rheum Dis. 2001;60:566–72. doi: 10.1136/ard.60.6.566.
    1. Lehman AJ, Esdaile JM, Klinkhoff AV, Grant E, Fitzgerald A, Canvin J, METGO Study Group A 48-week, randomized, double-blind, double-observer, placebo-controlled multicenter trial of combination methotrexate and intramuscular gold therapy in rheumatoid arthritis: results of the METGO study. Arthritis Rheum. 2005;52:1360–70. doi: 10.1002/art.21018.
    1. Smolen JS, Landewé R, Breedveld FC, Dougados M, Emery P, Gaujoux-Viala C, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs. Ann Rheum Dis. 2010;69:964–75. doi: 10.1136/ard.2009.126532.
    1. Sander O, Herborn G, Bock E, Rau R. Prospective six year follow up of patients withdrawn from a randomised study comparing parenteral gold salt and methotrexate. Ann Rheum Dis. 1999;58:281–7. doi: 10.1136/ard.58.5.281.
    1. Nejrup K, Olivarius NdeF, Jacobsen JL, Siersma V. Randomised controlled trial of extraarticular gold bead implantation for treatment of knee osteoarthritis: a pilot study. Clin Rheumatol. 2008;27:1363–9. doi: 10.1007/s10067-008-0918-9.
    1. Jaeger GT, Larsen S, Søli N, Moe L. Double-blind, placebo-controlled trial of the pain-relieving effects of the implantation of gold beads into dogs with hip dysplasia. Vet Rec. 2006;158:722–6. doi: 10.1136/vr.158.21.722.
    1. Danscher G. In vivo liberation of gold ions from gold implants. Autometallographic tracing of gold in cells adjacent to metallic gold. Histochem Cell Biol. 2002;117:447–52. doi: 10.1007/s00418-002-0400-8.
    1. Tsai CY, Shiau AL, Chen SY, Chen YH, Cheng PC, Chang MY, et al. Amelioration of collagen-induced arthritis in rats by nanogold. Arthritis Rheum. 2007;56:544–54. doi: 10.1002/art.22401.
    1. Leonavičienė L, Kirdaitė G, Bradūnaitė R, Vaitkienė D, Vasiliauskas A, Zabulytė D, et al. Effect of gold nanoparticles in the treatment of established collagen arthritis in rats. Medicina (Kaunas) 2012;48:91–101.
    1. Dykman LA, Khlebtsov NG. Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Naturae. 2011;3:34–55.
    1. Edwards SH. Intra-articular drug delivery: the challenge to extend drug residence time within the joint. Vet J. 2011;190:15–21. doi: 10.1016/j.tvjl.2010.09.019.
    1. Butoescu N, Jordan O, Doelker E. Intra-articular drug delivery systems for the treatment of rheumatic diseases: a review of the factors influencing their performance. Eur J Pharm Biopharm. 2009;73:205–18. doi: 10.1016/j.ejpb.2009.06.009.
    1. Squier CA, Mantz MJ, Schlievert PM, Davis CC. Porcine vagina ex vivo as a model for studying permeability and pathogenesis in mucosa. J Pharm Sci. 2008;97:9–21. doi: 10.1002/jps.21077.
    1. Blikslager AT, Moeser AJ, Gookin JL, Jones SL, Odle J. Restoration of barrier function in injured intestinal mucosa. Physiol Rev. 2007;87:545–64. doi: 10.1152/physrev.00012.2006.
    1. Walsh AJ, Poole KM, Duvall CL, Skala MC. Ex vivo optical metabolic measurements from cultured tissue reflect in vivo tissue status. J Biomed Opt. 2012;17:116015. doi: 10.1117/1.JBO.17.11.116015.
    1. Davies J. Potential Advantages of Using Biomimetic Alternatives. In: Davies J, ed. Replacing Animal Models: A practical Guide to Creating and Using Culture-based Biomimetic Alternatives: John Wiley & Sons, 2012.
    1. Morton AJ, Campbell NB, Gayle JM, Redding WR, Blikslager AT. Preferential and non-selective cyclooxygenase inhibitors reduce inflammation during lipopolysaccharide-induced synovitis. Res Vet Sci. 2005;78:189–92. doi: 10.1016/j.rvsc.2004.07.006.
    1. Sutton S, Clutterbuck A, Harris P, Gent T, Freeman S, Foster N, et al. The contribution of the synovium, synovial derived inflammatory cytokines and neuropeptides to the pathogenesis of osteoarthritis. Vet J. 2009;179:10–24. doi: 10.1016/j.tvjl.2007.08.013.
    1. Sabaratnam S, Arunan V, Coleman PJ, Mason RM, Levick JR. Size selectivity of hyaluronan molecular sieving by extracellular matrix in rabbit synovial joints. J Physiol. 2005;567:569–81. doi: 10.1113/jphysiol.2005.088906.
    1. Bergen JM, von Recum HA, Goodman TT, Massey AP, Pun SH. Gold nanoparticles as a versatile platform for optimizing physicochemical parameters for targeted drug delivery. Macromol Biosci. 2006;6:506–16. doi: 10.1002/mabi.200600075.
    1. Blikslager AT, Roberts MC, Argenzio RA. Prostaglandin-induced recovery of barrier function in porcine ileum is triggered by chloride secretion. Am J Physiol. 1999;276:G28–36.
    1. Huether MJ, Lin G, Smith DM, Murtaugh MP, Molitor TW. Cloning, sequencing and regulation of an mRNA encoding porcine interleukin-1 beta. Gene. 1993;129:285–9. doi: 10.1016/0378-1119(93)90281-7.
    1. Pecchi E, Priam S, Mladenovic Z, Gosset M, Saurel AS, Aguilar L, et al. A potential role of chondroitin sulfate on bone in osteoarthritis: inhibition of prostaglandin E₂ and matrix metalloproteinases synthesis in interleukin-1β-stimulated osteoblasts. Osteoarthritis Cartilage. 2012;20:127–35. doi: 10.1016/j.joca.2011.12.002.
    1. Chandrasekhar S, Harvey AK, Hrubey PS. Intra-articular administration of interleukin-1 causes prolonged suppression of cartilage proteoglycan synthesis in rats. Matrix. 1992;12:1–10. doi: 10.1016/S0934-8832(11)80099-5.
    1. Goodstone NJ, Hardingham TE. Tumour necrosis factor alpha stimulates nitric oxide production more potently than interleukin-1beta in porcine articular chondrocytes. Rheumatology (Oxford) 2002;41:883–91. doi: 10.1093/rheumatology/41.8.883.
    1. Shimokawa H, Ito A, Fukumoto Y, Kadokami T, Nakaike R, Sakata M, et al. Chronic treatment with interleukin-1 beta induces coronary intimal lesions and vasospastic responses in pigs in vivo. The role of platelet-derived growth factor. J Clin Invest. 1996;97:769–76. doi: 10.1172/JCI118476.
    1. Bai LJ, Tuch BE, Hering B, Simpson AM. Fetal pig beta cells are resistant to the toxic effects of human cytokines. Transplantation. 2002;73:714–22. doi: 10.1097/00007890-200203150-00010.
    1. Jana B, Kozłowska A, Andronowska A, Jedlińska-Krakowska M. The effect of tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-1 beta and IL-6 on chorioamnion secretion of prostaglandins (PG)F 2 alpha and E2 in pigs. Reprod Biol. 2008;8:57–68. doi: 10.1016/S1642-431X(12)60004-7.
    1. Kojima F, Kato S, Kawai S. Prostaglandin E synthase in the pathophysiology of arthritis. Fundam Clin Pharmacol. 2005;19:255–61. doi: 10.1111/j.1472-8206.2005.00316.x.
    1. Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011;7:33–42. doi: 10.1038/nrrheum.2010.196.
    1. Bertone AL, Palmer JL, Jones J. Synovial fluid cytokines and eicosanoids as markers of joint disease in horses. Vet Surg. 2001;30:528–38. doi: 10.1053/jvet.2001.28430.
    1. Ritchlin C. Fibroblast biology. Effector signals released by the synovial fibroblast in arthritis. Arthritis Res. 2000;2:356–60. doi: 10.1186/ar112.
    1. Attur M, Samuels J, Krasnokutsky S, Abramson SB. Targeting the synovial tissue for treating osteoarthritis (OA): where is the evidence? Best Pract Res Clin Rheumatol. 2010;24:71–9. doi: 10.1016/j.berh.2009.08.011.
    1. Byron CR, Stewart MC, Stewart AA, Pondenis HC. Effects of clinically relevant concentrations of glucosamine on equine chondrocytes and synoviocytes in vitro. Am J Vet Res. 2008;69:1129–34. doi: 10.2460/ajvr.69.9.1129.
    1. May SA, Hooke RE, Lees P. Interleukin-1 stimulation of equine articular cells. Res Vet Sci. 1992;52:342–8. doi: 10.1016/0034-5288(92)90035-Z.
    1. Hardy J, Bertone AL, Weisbrode SE, Muir WW, O’Dorisio TM, Masty J. Cell trafficking, mediator release, and articular metabolism in acute inflammation of innervated or denervated isolated equine joints. Am J Vet Res. 1998;59:88–100.
    1. Pearson W, Orth MW, Lindinger MI. Evaluation of inflammatory responses induced via intra-articular injection of interleukin-1 in horses receiving a dietary nutraceutical and assessment of the clinical effects of long-term nutraceutical administration. Am J Vet Res. 2009;70:848–61. doi: 10.2460/ajvr.70.7.848.
    1. Sabaratnam S, Coleman PJ, Mason RM, Levick JR. Interstitial matrix proteins determine hyaluronan reflection and fluid retention in rabbit joints: effect of protease. J Physiol. 2007;578:291–9. doi: 10.1113/jphysiol.2006.119446.
    1. Zuin S, Pojana G, Marcomini A. Effect-Oriented Physicochemical Characterization of Nanomaterials. In: Monteiro-Riviere NA, Tran CL, eds. Nanotoxicology: Characterization, Dosing and Health Effects. New York: Informa Healthcare, 2007:19-57.
    1. Stone V, Kinloch I. Nanoparticle Interactions with Biological Systems and Subsequent Activation of Intracellular Signaling Mechanisms. In: Monteiro-Riviere NA, Tran CL, eds. Nanotoxicology: Characterization, Dosing and Health Effects. New York: Informa Healthcare, 2007:351-68.
    1. Brewer SH, Glomm WR, Johnson MC, Knag MK, Franzen S. Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir. 2005;21:9303–7. doi: 10.1021/la050588t.
    1. Mahl D, Greulich C, Meyer-Zaika W, Koller M, Epple M. Gold nanoparticles: dispersibility in biological media and cell-biological effect. J Mater Chem. 2010;20:6176–81. doi: 10.1039/c0jm01071e.
    1. Kroll A, Pillukat MH, Hahn D, Schnekenburger J. Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur J Pharm Biopharm. 2009;72:370–7. doi: 10.1016/j.ejpb.2008.08.009.
    1. Monteiro-Riviere NA, Inman AO, Zhang LW. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol. 2009;234:222–35. doi: 10.1016/j.taap.2008.09.030.
    1. Kroll A, Pillukat MH, Hahn D, Schnekenburger J. Interference of engineered nanoparticles with in vitro toxicity assays. Arch Toxicol. 2012;86:1123–36. doi: 10.1007/s00204-012-0837-z.
    1. Wang G, Zhang J, Dewilde AH, Pal AK, Bello D, Therrien JM, et al. Understanding and correcting for carbon nanotube interferences with a commercial LDH cytotoxicity assay. Toxicology. 2012;299:99–111. doi: 10.1016/j.tox.2012.05.012.
    1. Wang Z, Zhao J, Li F, Gao D, Xing B. Adsorption and inhibition of acetylcholinesterase by different nanoparticles. Chemosphere. 2009;77:67–73. doi: 10.1016/j.chemosphere.2009.05.015.
    1. Hyc A, Osiecka-Iwan A, Niderla-Bielinska J, Jankowska-Steifer E, Moskalewski S. Pro- and anti-inflammatory cytokines increase hyaluronan production by rat synovial membrane in vitro. Int J Mol Med. 2009;24:579–85.
    1. Tammi RH, Passi AG, Rilla K, Karousou E, Vigetti D, Makkonen K, et al. Transcriptional and post-translational regulation of hyaluronan synthesis. FEBS J. 2011;278:1419–28. doi: 10.1111/j.1742-4658.2011.08070.x.
    1. Sumbayev VV, Yasinska IM, Garcia CP, Gilliland D, Lall GS, Gibbs BF, et al. Gold nanoparticles downregulate interleukin-1β-induced pro-inflammatory responses. Small. 2013;9:472–7. doi: 10.1002/smll.201201528.
    1. Bhattacharya R, Mukherjee P, Xiong Z, Atala A, Soker S, Mukhopadhyay D. Gold nanoparticles inhibit VEGF165-induced proliferation of HUVEC cells. Nano Lett. 2004;4:2479–81. doi: 10.1021/nl0483789.
    1. Ma JS, Kim WJ, Kim JJ, Kim TJ, Ye SK, Song MD, et al. Gold nanoparticles attenuate LPS-induced NO production through the inhibition of NF-kappaB and IFN-beta/STAT1 pathways in RAW264.7 cells. Nitric Oxide. 2010;23:214–9. doi: 10.1016/j.niox.2010.06.005.
    1. Larsen A, Stoltenberg M, Danscher G. In vitro liberation of charged gold atoms: autometallographic tracing of gold ions released by macrophages grown on metallic gold surfaces. Histochem Cell Biol. 2007;128:1–6. doi: 10.1007/s00418-007-0295-5.
    1. Elder RC, Zhao Z, Zhang YF, Dorsey JG, Hess EV, Tepperman K. Dicyanogold (I) is a common human metabolite of different gold drugs. J Rheumatol. 1993;20:268–72.
    1. Graham GG, Dale MM. The activation of gold complexes by cyanide produced by polymorphonuclear leukocytes--II. Evidence for the formation and biological activity of aurocyanide. Biochem Pharmacol. 1990;39:1697–702. doi: 10.1016/0006-2952(90)90113-Y.
    1. Graham GG, Kettle AJ. The activation of gold complexes by cyanide produced by polymorphonuclear leukocytes. III. The formation of aurocyanide by myeloperoxidase. Biochem Pharmacol. 1998;56:307–12. doi: 10.1016/S0006-2952(98)00031-8.
    1. Yanni G, Nabil M, Farahat MR, Poston RN, Panayi GS. Intramuscular gold decreases cytokine expression and macrophage numbers in the rheumatoid synovial membrane. Ann Rheum Dis. 1994;53:315–22. doi: 10.1136/ard.53.5.315.
    1. Yang JP, Merin JP, Nakano T, Kato T, Kitade Y, Okamoto T. Inhibition of the DNA-binding activity of NF-kappa B by gold compounds in vitro. FEBS Lett. 1995;361:89–96. doi: 10.1016/0014-5793(95)00157-5.
    1. Yoshida S, Kato T, Sakurada S, Kurono C, Yang JP, Matsui N, et al. Inhibition of IL-6 and IL-8 induction from cultured rheumatoid synovial fibroblasts by treatment with aurothioglucose. Int Immunol. 1999;11:151–8. doi: 10.1093/intimm/11.2.151.
    1. Nieminen R, Korhonen R, Moilanen T, Clark AR, Moilanen E. Aurothiomalate inhibits cyclooxygenase 2, matrix metalloproteinase 3, and interleukin-6 expression in chondrocytes by increasing MAPK phosphatase 1 expression and decreasing p38 phosphorylation: MAPK phosphatase 1 as a novel target for antirheumatic drugs. Arthritis Rheum. 2010;62:1650–9. doi: 10.1002/art.27409.
    1. Tomlinson JE, Blikslager AT. Effects of cyclooxygenase inhibitors flunixin and deracoxib on permeability of ischaemic-injured equine jejunum. Equine Vet J. 2005;37:75–80. doi: 10.2746/0425164054406865.
    1. Hill TL. A Canine Gastric Mucosa Injury Model. Raleigh, North Carolina: North Carolina State University, 2012.
    1. Chang CC, Hsieh MS, Liao ST, Chen YH, Cheng CW, Huang PT, et al. Hyaluronan regulates PPARγ and inflammatory responses in IL-1β-stimulated human chondrosarcoma cells, a model for osteoarthritis. Carbohydr Polym. 2012;90:1168–75. doi: 10.1016/j.carbpol.2012.06.071.
    1. Ross TN, Kisiday JD, Hess T, McIlwraith CW. Evaluation of the inflammatory response in experimentally induced synovitis in the horse: a comparison of recombinant equine interleukin 1 beta and lipopolysaccharide. Osteoarthritis Cartilage. 2012;20:1583–90. doi: 10.1016/j.joca.2012.08.008.
    1. Sonavane G, Tomoda K, Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B Biointerfaces. 2008;66:274–80. doi: 10.1016/j.colsurfb.2008.07.004.
    1. Sonavane G, Tomoda K, Sano A, Ohshima H, Terada H, Makino K. In vitro permeation of gold nanoparticles through rat skin and rat intestine: effect of particle size. Colloids Surf B Biointerfaces. 2008;65:1–10. doi: 10.1016/j.colsurfb.2008.02.013.
    1. Khlebtsov N, Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev. 2011;40:1647–71. doi: 10.1039/c0cs00018c.
    1. Cho WS, Kim S, Han BS, Son WC, Jeong J. Comparison of gene expression profiles in mice liver following intravenous injection of 4 and 100 nm-sized PEG-coated gold nanoparticles. Toxicol Lett. 2009;191:96–102. doi: 10.1016/j.toxlet.2009.08.010.
    1. Cho WS, Cho M, Jeong J, Choi M, Cho HY, Han BS, et al. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol Appl Pharmacol. 2009;236:16–24. doi: 10.1016/j.taap.2008.12.023.
    1. Hellstern D, Schulze K, Schöpf B, Petri-Fink A, Steitz B, Kamau S, et al. Systemic distribution and elimination of plain and with Cy3.5 functionalized poly(vinyl alcohol) coated superparamagnetic maghemite nanoparticles after intraarticular injection in sheep in vivo. J Nanosci Nanotechnol. 2006;6:3261–8. doi: 10.1166/jnn.2006.482.
    1. Barber PA, Rushforth D, Agrawal S, Tuor UI. Infrared optical imaging of matrix metalloproteinases (MMPs) up regulation following ischemia reperfusion is ameliorated by hypothermia. BMC Neurosci. 2012;13:76. doi: 10.1186/1471-2202-13-76.
    1. Dykstra MJ. Manual of Applied Techniques for Biological Electron Microscopy. New York, NY: Plenum Press, 1993.

Source: PubMed

3
Abonnere