Biodistribution of gold nanoparticles in mouse lung following intratracheal instillation

Evaldas Sadauskas, Nicklas Raun Jacobsen, Gorm Danscher, Meredin Stoltenberg, Ulla Vogel, Agnete Larsen, Wolfgang Kreyling, Håkan Wallin, Evaldas Sadauskas, Nicklas Raun Jacobsen, Gorm Danscher, Meredin Stoltenberg, Ulla Vogel, Agnete Larsen, Wolfgang Kreyling, Håkan Wallin

Abstract

Background: The fate of gold nanoparticles, 2, 40 and 100 nm, administered intratracheally to adult female mice was examined. The nanoparticles were traced by autometallography (AMG) at both ultrastructural and light microscopic levels. Also, the gold content was quantified by inductively coupled plasma mass spectrometry (ICP-MS) and neutron activation analysis (NAA). The liver is the major site of deposition of circulating gold nanoparticles. Therefore the degree of translocation was determined by the hepatic deposition of gold. Mice were instilled with 5 intratracheal doses of gold nanoparticles distributed over a period of 3 weeks and were killed 24 h after the last dose. One group of mice were given a single intratracheal dose and were killed after 1 h.

Results: The instilled nanoparticles were found in lung macrophages already 1 h after a single instillation. In mice instilled treated repeatedly during 3 weeks, the load was substantial. Ultrastructurally, AMG silver enhanced gold nanoparticles were found in lysosome-/endosome-like organelles of the macrophages and analysis with AMG, ICP-MS and NAA of the liver revealed an almost total lack of translocation of nanoparticles. In mice given repeated instillations of 2 nm gold nanoparticles, 1.4 per thousand (by ICP-MS) to 1.9 per thousand (by NAA) of the instilled gold was detected in the liver. With the 40 nm gold, no gold was detected in the liver (detection level 2 ng, 0.1 per thousand) except for one mouse in which 3 per thousand of the instilled gold was found in the liver. No gold was detected in any liver of mice instilled with 100 nm gold (detection level 2 ng, 0.1 per thousand) except in a single animal with 0.39 per thousand of the dose in the liver.

Conclusion: We found that that: (1) inert gold nanoparticles, administered intratracheally are phagocytosed by lung macrophages; (2) only a tiny fraction of the gold particles is translocated into systemic circulation. (3) The translocation rate was greatest with the 2 nm gold particles.

Figures

Figure 1
Figure 1
Light and electron micrographs showing AMG enhanced gold nanoparticles in the lungs of mice following intratracheal instillations. A and B represent LM section taken from the animals exposed to multiple intratracheal instillations with gold, 40 nm and 100 nm nanoparticles, respectively. AMG enhanced gold nanoaparticles are located inside lung macrophages resembling cells. C represents a control, void of AMG staining. D and E are EM picture representing the animals exposed to multiples instillations with 40 nm gold nanoparticles. Gold is located inside lysosome/endosome-like vesicles. Scalebars: 20 μm in A - C; 1 μm in D; 500 nm in E.

References

    1. von Klot S, Wölke G, Tuch T, Heinrich J, Dockery DW, Schwartz J, Kreyling WG, Wichmann HE, Peters A. Increased asthma medication use in association with ambient fine and ultrafine particles. Eur Respir J. 2002;20:691–702. doi: 10.1183/09031936.02.01402001.
    1. von Klot S, Peters A, Aalto P, Bellander T, Berglind N, D'Ippoliti D, Elosua R, Hörmann A, Kulmala M, Lanki T, Löwel H, Pekkanen J, Picciotto S, Sunyer J, Forastiere F. Health Effects of Particles on Susceptible Subpopulations (HEAPSS) Study Group. Ambient air pollution is associated with increased risk of hospital cardiac readmissions of myocardial infarction survivors in five European cities. Circulation. 2005;112:3073–9. doi: 10.1161/CIRCULATIONAHA.105.548743. Erratum in: Circulation 2006, 113: e71.
    1. Ibald-Mulli A, Timonen KL, Peters A, Heinrich J, Wölke G, Lanki T, Buzorius G, Kreyling WG, de Hartog J, Hoek G, ten Brink HM, Pekkanen J. Effects of particulate air pollution on blood pressure and heart rate in subjects with cardiovascular disease: a multicenter approach. Environ Health Perspect. 2004;112:369–77.
    1. Pope CA. Air pollution and health - good news and bad. N Engl J Med. 2004;351:1132–4. doi: 10.1056/NEJMe048182.
    1. Pope CA, Dockery DW. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc. 2006;56:709–42.
    1. Pope CA. Mortality effects of longer term exposures to fine particulate air pollution: review of recent epidemiological evidence. Inhal Toxicol. 2007;1:33–8. doi: 10.1080/08958370701492961.
    1. Nemmar A, Hoylaerts MF, Nemery B. Effects of particulate air pollution on hemostasis. Clin Occup Environ Med. 2006;5:865–81.
    1. Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A, Kreyling W, Cox C. Extrapulmonary translocation of ultrafine carbon particles following whole- body inhalation exposure of rats. J Toxicol Environ Health A. 2002;65:1531–43. doi: 10.1080/00984100290071658.
    1. Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, Oberdörster G, Ziesenis A. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A. 2002;65:1513–30. doi: 10.1080/00984100290071649.
    1. Nemmar A, Hoylaerts MF, Hoet PH, Dinsdale D, Smith T, Xu H, Vermylen J, Nemery B. Ultrafine particles affect experimental thrombosis in an in vivo hamster model. Am J Respir Crit Care Med. 2002;166:998–1004. doi: 10.1164/rccm.200110-026OC.
    1. Nemmar A, Hoylaerts MF, Hoet PH, Nemery B. Possible mechanisms of the cardiovascular effects of inhaled particles: systemic translocation and prothrombotic effects. Toxicol Lett. 2004;149:243–53. doi: 10.1016/j.toxlet.2003.12.061.
    1. Inoue H, Shimada A, Kaewamatawong T, Naota M, Morita T, Ohta Y, Inoue K, Takano H. Ultrastructural changes of the air-blood barrier in mice after intratracheal instillation of lipopolysaccharide and ultrafine carbon black particles. Exp Toxicol Pathol. 2009;61:51–8. doi: 10.1016/j.etp.2007.10.001.
    1. Mühlfeld C, Rothen-Rutishauser B, Blank F, Vanhecke D, Ochs M, Gehr P. Interactions of nanoparticles with pulmonary structures and cellular responses. Am J Physiol Lung Cell Mol Physiol. 2008;294:817–29. doi: 10.1152/ajplung.00442.2007.
    1. Kreyling WG, Semmler-Behnke M, Seitz J, Scymczak W, Wenk A, Mayer P, Takenaka S, Oberdörster G. Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal Toxicol. 2009;21:55–60. doi: 10.1080/08958370902942517.
    1. Kreyling WG, Semmler-Behnke M, Möller W. Ultrafine particle-lung interactions: does size matter? J Aerosol Med. 2006;19:74–83. doi: 10.1089/jam.2006.19.74.
    1. Yu LE, Yung LL, Ong C, Tan Y, Balasubramaniam KS, Hartono D, Shui G, Wenk MR, Ong W. Translocation and effects of gold nanoparticles after inhalation exposure in rats. Nanotoxicology. 2007;1:235–242. doi: 10.1080/17435390701763108.
    1. Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol. 2004;16:437–45. doi: 10.1080/08958370490439597.
    1. Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J, Oberdörster G. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect. 2006;114:1172–8. Erratum in: Environ Health Perspect 2006, 114:1178.
    1. Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir. 2005;21:10644–54. doi: 10.1021/la0513712.
    1. Danscher G, Nörgaard JO. Light microscopic visualization of colloidal gold on resin- embedded tissue. J Histochem Cytochem. 1983;31:1394–8.
    1. Penn SG, He L, Natan MJ. Nanoparticles for bioanalysis. Curr Opin Chem Biol. 2003;7:609–15. doi: 10.1016/j.cbpa.2003.08.013.
    1. Bergen JM, von Recum HA, Goodman TT, Massey AP, Pun SH. Gold nanoparticles as a versatile platform for optimizing physicochemical parameters for targeted drug delivery. Macromol Biosci. 2006;6:506–16. doi: 10.1002/mabi.200600075.
    1. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM. Gold nanoparticles: a new X-ray contrast agent. Br J Radiol. 2006;79:248–53. doi: 10.1259/bjr/13169882.
    1. Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM. Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol. 2008;60:977–85. doi: 10.1211/jpp.60.8.0005.
    1. Takenaka S, Karg E, Kreyling WG, Lentner B, Möller W, Behnke-Semmler M, Jennen L, Walch A, Michalke B, Schramel P, Heyder J, Schulz H. Distribution pattern of inhaled ultrafine gold particles in the rat lung. Inhal Toxicol. 2006;18:733–40. doi: 10.1080/08958370600748281.
    1. Semmler-Behnke M, Kreyling WG, Lipka J, Fertsch S, Wenk A, Takenaka S, Schmid G, Brandau W. Biodistribution of 1.4- and 18-nm gold particles in rats. Small. 2008;4:2108–11. doi: 10.1002/smll.200800922.
    1. Sadauskas E, Wallin H, Stoltenberg M, Vogel U, Doering P, Larsen A, Danscher G. Kupffer cells are central in the removal of nanoparticles from the organism. Part Fibre Toxicol. 2007;4:10. doi: 10.1186/1743-8977-4-10.
    1. Sadauskas E, Danscher G, Stoltenberg M, Vogel U, Larsen A, Wallin H. Protracted elimination of gold nanoparticles from mouse liver. Nanomedicine. 2009;5:162–9.
    1. Danscher G, Stoltenberg M. Silver enhancement of quantum dots resulting from (1) metabolism of toxic metals in animals and humans, (2) in vivo, in vitro and immersion created zinc-sulphur/zinc-selenium nanocrystals, (3) metal ions liberated from metal implants and particles. Prog Histochem Cytochem. 2006;41:57–139. doi: 10.1016/j.proghi.2006.06.001.
    1. Lippmann M, Yeates DB, Albert RE. Deposition, retention, and clearance of inhaled particles. Br J Ind Med. 1980;37:337–62.
    1. Stuart BO. Deposition and clearance of inhaled particles. Environ Health Perspect. 1984;55:369–90. doi: 10.2307/3429715.
    1. Freitas RA. , JrNanomedicine, Volume IIA: Biocompatibility, 2003.

Source: PubMed

3
Abonnere