High-density lipoprotein cholesterol concentration and acute kidney injury after noncardiac surgery

Yan Zhou, Hong-Yun Yang, Hui-Li Zhang, Xiao-Jin Zhu, Yan Zhou, Hong-Yun Yang, Hui-Li Zhang, Xiao-Jin Zhu

Abstract

Background: Abnormal High-density Lipoprotein Cholesterol Concentration is closely related to postoperative acute kidney injury (AKI) after cardiac surgeries. The purpose of this study was to analyze the relationship between High-density Lipoprotein Cholesterol Concentration and acute kidney injury after non-cardiac surgeries.

Method: This was a single-center cohort study for elective non-cardiac non-kidney surgery from January 1, 2012, to December 31, 2017. The endpoint was the occurrence of acute kidney injury (AKI) 7 days postoperatively in the hospital. Preoperative serum High-density Lipoprotein Cholesterol Concentration was examined by multivariate logistic regression models before and after propensity score weighting analysis.

Results: Of the 74,284 surgeries, 4.4% (3159 cases) suffered acute kidney injury. The odds ratio for HDL (0.96-1.14 as reference, < 0.96, 1.14-1.35, > 1.35) was 1.28 (1.14-1.41), P < 0.001; 0.91 (0.80-1.03), P = 0.150; 0.75 (0.64-0.85), P < 0.001, respectively. Using a dichotomized cutoff point for propensity analysis, Preoperative serum HDL < 1.03 mmol/L (> 1.03 as reference) was associated with increased risk of postoperative AKI, with odds ratio 1.40 (1.27 ~ 1.52), P < 0.001 before propensity score weighting, and 1.32 (1.21-1.46), P < 0.001 after propensity score weighting. Sensitivity analysis with other cut values of HDL showed similar results.

Conclusions: Using multivariate regression analyses before and after propensity score weighting, in addition to multiple sensitivity analysis methods, this study found that following non-cardiac surgery, low HDL cholesterol levels were independent risk factors for AKI.

Trial registration: ClinicalTrials.gov NCT03954353.

Keywords: Acute kidney injury; High-density lipoprotein cholesterol; Noncardiac surgery; Risk factors.

Conflict of interest statement

None.

References

    1. Sun LY, Wijeysundera DN, Tait GA, Beattie WS. Association of intraoperative hypotension with acute kidney injury after elective noncardiac surgery. Anesthesiology. 2015;123:515–523. doi: 10.1097/ALN.0000000000000765.
    1. Ng RRG, Chew STH, Liu W, Shen L, Ti LK. Identification of modifiable risk factors for acute kidney injury after coronary artery bypass graft surgery in an Asian population. J Thorac Cardiovasc Surg. 2014;147:1356–1361. doi: 10.1016/j.jtcvs.2013.09.040.
    1. Lee E-H, Kim W-J, Kim J-Y, Chin J-H, Choi D-K, Sim J-Y, Choo S-J, Chung C-H, Lee J-W, Choi I-C. Effect of exogenous albumin on the incidence of postoperative acute kidney injury in patients undergoing off-pump coronary artery bypass surgery with a preoperative albumin level of less than 4.0 g/dl. J Anesthesiology. 2016;124:1001–1011. doi: 10.1097/ALN.0000000000001051.
    1. Lee E-H, Baek S-H, Chin J-H, Choi D-K, Son H-J, Kim W-J, Hahm K-D, Sim J-Y, Choi I-C. Preoperative hypoalbuminemia is a major risk factor for acute kidney injury following off-pump coronary artery bypass surgery. J Intens Care Med. 2012;38:1478–1486. doi: 10.1007/s00134-012-2599-8.
    1. Kim M, Brady JE, Li G. Variations in the risk of acute kidney injury across intraabdominal surgery procedures. J Anesthesia Analgesia. 2014;119:1121–1132. doi: 10.1213/ANE.0000000000000425.
    1. Goren O, Levy A, Cattan A, Lahat G, Matot I. Acute kidney injury in pancreatic surgery; association with urine output and intraoperative fluid administration. Am J Surg. 2017;214:246–250. doi: 10.1016/j.amjsurg.2017.01.040.
    1. Garg AX, Kurz A, Sessler DI, Cuerden M, Robinson A, Mrkobrada M, Parikh CR, Mizera R, Jones PM, Tiboni M. Perioperative aspirin and clonidine and risk of acute kidney injury: a randomized clinical trial. J Jama. 2014;312:2254–2264. doi: 10.1001/jama.2014.15284.
    1. Futier E, Lefrant J-Y, Guinot P-G, Godet T, Lorne E, Cuvillon P, Bertran S, Leone M, Pastene B, Piriou V. Effect of individualized vs standard blood pressure management strategies on postoperative organ dysfunction among high-risk patients undergoing major surgery: a randomized clinical trial. J Jama. 2017;318:1346–1357. doi: 10.1001/jama.2017.14172.
    1. Bress AP, Kramer H, Khatib R, Beddhu S, Cheung AK, Hess R, Bansal VK, Cao G, Yee J, Moran AE. Potential deaths averted and serious adverse events incurred from adoption of the SPRINT (systolic blood pressure intervention trial) intensive blood pressure regimen in the United States: projections from NHANES (National Health and nutrition examination survey) J Circulation. 2017;135:1617–1628. doi: 10.1161/CIRCULATIONAHA.116.025322.
    1. Smith LE, Smith DK, Blume JD, Linton MRF, Billings IV, Frederic T. High-Density Lipoprotein Cholesterol Concentration and Acute Kidney Injury After Cardiac Surgery. J Am Heart Assoc. 2017;6:e006975.
    1. Wilson T, Quan S, Cheema K, Zarnke K, Quinn R, de Koning L, Dixon E, Pannu N, James MT. Risk prediction models for acute kidney injury following major noncardiac surgery: systematic review. J Nephrology Dial Transplant. 2015;31:231–240.
    1. Donati A, Ruzzi M, Adrario E, Pelaia P, Coluzzi F, Gabbanelli V, Pietropaoli P. A new and feasible model for predicting operative risk. Br J Anaesth. 2004;93:393–399. doi: 10.1093/bja/aeh210.
    1. Superko HR, Pendyala L, Williams PT, Momary KM, King SB, III, Garrett B. High-density lipoprotein subclasses and their relationship to cardiovascular disease. J Clin Lipidol. 2012;6:496–523. doi: 10.1016/j.jacl.2012.03.001.
    1. Ridgeway G, McCaffrey D, Morral A, Burgette L, Griffin BA, CA: RAND Corporation . Toolkit for Weighting and Analysis of Nonequivalent Groups: A tutorial for the twang package. 2006.
    1. McCaffrey DF, Griffin BA, Almirall D, Slaughter ME, Ramchand R, Burgette LF. A tutorial on propensity score estimation for multiple treatments using generalized boosted models. Stat Med. 2013;32:3388–3414. doi: 10.1002/sim.5753.
    1. Jones PM, Cherry RA, Allen BN, Bray Jenkyn KM, Shariff SZ, Flier S, Vogt KN, Wijeysundera DN. Association between handover of anesthesia care and adverse postoperative outcomes among patients undergoing major surgery. JAMA. 2018;319:143–153. doi: 10.1001/jama.2017.20040.
    1. Sacks FM, Tonkin AM, Craven T, Pfeffer MA, Shepherd J, Keech A, Furberg CD, Braunwald E. Coronary heart disease in patients with low LDL-cholesterol: benefit of pravastatin in diabetics and enhanced role for HDL-cholesterol and triglycerides as risk factors. J Circulation. 2002;105:1424–1428. doi: 10.1161/01.CIR.0000012918.84068.43.
    1. Barter P, Gotto AM, LaRosa JC, Maroni J, Szarek M, Grundy SM, Kastelein JJP, Bittner V, Fruchart J-C. HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N Eng J Medicine. 2007;357:1301–1310. doi: 10.1056/NEJMoa064278.
    1. Acharjee S, Boden WE, Hartigan PM, Teo KK, Maron DJ, Sedlis SP, Kostuk W, Spertus JA, Dada M, Chaitman BR. Low levels of high-density lipoprotein cholesterol and increased risk of cardiovascular events in stable ischemic heart disease patients: a post-hoc analysis from the COURAGE trial (clinical outcomes utilizing revascularization and aggressive drug evaluation) J Am Coll Cardiol. 2013;62:1826–1833. doi: 10.1016/j.jacc.2013.07.051.
    1. Mora S, Glynn RJ, Ridker PM. High-density lipoprotein cholesterol, size, particle number, and residual vascular risk after potent statin therapy. Circulation. 2013;128:1189–1197. doi: 10.1161/CIRCULATIONAHA.113.002671.
    1. Mackey RH, Greenland P, Goff DC, Lloyd-Jones D, Sibley CT, Mora S. High-density lipoprotein cholesterol and particle concentrations, carotid atherosclerosis, and coronary events: MESA (multi-ethnic study of atherosclerosis) J Am Coll Cardiol. 2012;60:508–516. doi: 10.1016/j.jacc.2012.03.060.
    1. Asztalos BF, Collins D, Horvath KV, Bloomfield HE, Robins SJ, Schaefer EJ. Relation of gemfibrozil treatment and high-density lipoprotein subpopulation profile with cardiovascular events in the Veterans Affairs High-Density Lipoprotein Intervention Trial. Metabolism. 2008;57:77–83. doi: 10.1016/j.metabol.2007.08.009.
    1. Briel M, Ferreira-Gonzalez I, You JJ, Karanicolas PJ, Akl EA, Wu P, Blechacz B, Bassler D, Wei X, Sharman A, Whitt I. Association between change in high density lipoprotein cholesterol and cardiovascular disease morbidity and mortality: systematic review and meta-regression analysis. BMJ. 2009;338:b92. doi: 10.1136/bmj.b92.
    1. Rosenson RS, Brewer J, Bryan H, Davidson WS, Fayad ZA, Fuster V, Goldstein J, Hellerstein M, Jiang X-C, Phillips MC, Rader DJ. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation. 2012;125:1905–1919. doi: 10.1161/CIRCULATIONAHA.111.066589.
    1. Haase CL, Tybjærg-Hansen A, Grande P, Frikke-Schmidt R. Genetically elevated apolipoprotein AI, high-density lipoprotein cholesterol levels, and risk of ischemic heart disease. J Clin Endocrinol Metab. 2010;95:E500–EE10. doi: 10.1210/jc.2010-0450.
    1. Haase CLT-HA, Ali Qayyum A, Schou J, Nordestgaard BG, Frikke-Schmidt R. LCAT, HDL cholesterol and ischemic cardiovascular disease: a Mendelian randomization study of HDL cholesterol in 54,500 individuals. J Clin Endocrinol Metab. 2012;97:E248–EE56. doi: 10.1210/jc.2011-1846.
    1. Rosenson RSBJH, Ansell B, Barter P, Chapman MJ, Heinecke JW, Kontush A, Tall AR, Webb NR. Translation of high-density lipoprotein function into clinical practice: current prospects and future challenges. Circulation. 2013;128(11):1256–1267. doi: 10.1161/CIRCULATIONAHA.113.000962.
    1. Kuhn FEME, Satler LF, Reagan K, Lu DY, Rackley CE. Effects of high-density lipoprotein on acetylcholine-induced coronary vasoreactivity. Am J Cardiol. 1991;68(15):1425–1430. doi: 10.1016/0002-9149(91)90274-O.
    1. Oram JF, Johnson CJ, Brown TA. Interaction of high density lipoprotein with its receptor on cultured fibroblasts and macrophages. Evidence for reversible binding at the cell surface without internalization. J Biol Chem. 1987;262(5):2405–2410.
    1. Kontush A, Chantepie S, Chapman MJ. Small, dense HDL particles exert potent protection of atherogenic LDL against oxidative stress. Arterioscler Thromb Vasc Biol. 2003;23(10):1881–1888. doi: 10.1161/01.ATV.0000091338.93223.E8.
    1. Soran HSJ, Liu Y, Durrington PN. How HDL protects LDL against atherogenic modification: paraoxonase 1 and other dramatis personae. Curr Opin Lipidol. 2015;26(4):247–256. doi: 10.1097/MOL.0000000000000194.
    1. Barter PJNS, Rye KA, Anantharamaiah GM, Navab M, Fogelman AM. Antiinflammatory properties of HDL. Circ Res. 2004;95(8):764–772. doi: 10.1161/01.RES.0000146094.59640.13.
    1. Murphy AJ, Akhtari M, Tolani S, Pagler T, Bijl N, Kuo CL, Wang M, Sanson M, Abramowicz S, Welch C, Bochem AE. ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J Clin Invest. 2011;121(10):4138–4149. doi: 10.1172/JCI57559.
    1. Saku K, Ahmad M, Glas-Greenwalt P, Kashyap ML. Activation of fibrinolysis by apolipoproteins of high density lipoproteins in man. Thromb Res. 1985;39(1):1–8. doi: 10.1016/0049-3848(85)90116-1.
    1. Griffin JH, Kojima K, Banka CL, Curtiss LK, Fernández JA. High-density lipoprotein enhancement of anticoagulant activities of plasma protein S and activated protein C. J Clin Invest. 1999;103(2):219–227. doi: 10.1172/JCI5006.
    1. Epand RM, Stafford A, Leon B, Lock PE, Tytler EM, Segrest JP, Anantharamaiah GM. HDL and apolipoprotein AI protect erythrocytes against the generation of procoagulant activity. Arterioscler Thromb. 1994;14(11):1775–1783. doi: 10.1161/01.ATV.14.11.1775.
    1. Aoyama T, Yui Y, Morishita H, Kawai C. Prostaglandin I2 half-life regulated by high density lipoprotein is decreased in acute myocardial infarction and unstable angina pectoris. Circulation. 1990;81(6):1784–1791. doi: 10.1161/01.CIR.81.6.1784.
    1. Yamamoto S, Yancey PG, Ikizler TA, Jerome WG, Kaseda R, Cox B, Bian A, Shintani A, Fogo AB, Linton MRF. Dysfunctional high-density lipoprotein in patients on chronic hemodialysis. J Am Coll Cardiol. 2012;60:2372–2379. doi: 10.1016/j.jacc.2012.09.013.
    1. Shroff R, Speer T, Colin S, Charakida M, Zewinger S, Staels B, Chinetti-Gbaguidi G, Hettrich I, Rohrer L, O’Neill F. HDL in children with CKD promotes endothelial dysfunction and an abnormal vascular phenotype. J Am Soc Nephrol. 2014;25:2658–2668. doi: 10.1681/ASN.2013111212.
    1. Kalantar-Zadeh K, Kopple J, Kamranpour N, Fogelman A, Navab M. HDL-inflammatory index correlates with poor outcome in hemodialysis patients. Kidney Int. 2007;72:1149–1156. doi: 10.1038/sj.ki.5002491.
    1. Murphy AJ, Woollard KJ, Hoang A, et al. High-density lipoprotein reduces the human monocyte inflammatory response. Arterioscler Thromb Vasc Bio. 2008;28:2071–2077. doi: 10.1161/ATVBAHA.108.168690.
    1. Wan Ahmad W, Sakri F, Mokhsin A, et al. Low serum high density lipoprotein cholesterol concentration is an independent predictor for enhanced inflammation and endothelial activation. PLoS One. 2015;10:e0116867. doi: 10.1371/journal.pone.0116867.
    1. Navab M, Hama SY, Anantharamaiah G, et al. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: steps 2 and 3. J Lipid Res. 2000;41:1495–1508.
    1. Navab M, Berliner JA, Subbanagounder G, et al. HDL and the inflammatory response induced by LDL-derived oxidized phospholipids. Arterioscler Thromb Vasc Biol. 2001;21:481–488. doi: 10.1161/01.ATV.21.4.481.
    1. Yuhanna IS, Zhu Y, Cox BE, et al. High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nat Med. 2001;7:853–857. doi: 10.1038/89986.
    1. Tso C, Martinic G, Fan W-H, et al. High-density lipoproteins enhance progenitor-mediated endothelium repair in mice. Arterioscler Thromb Vasc Biol. 2006;26:1144–1149. doi: 10.1161/.
    1. Shroff R, Speer T, Colin S, et al. HDL in children with CKD promotes endothelial dysfunction and an abnormal vascular phenotype. J Am Soc Nephrol. 2014;25:2658–2668. doi: 10.1681/ASN.2013111212.
    1. Jones PH, Nair R, Thakker KM. Prevalence of dyslipidemia and lipid goal attainment in statin-treated subjects from 3 data sources: a retrospective analysis. J Am Heart Assoc. 2012;1:e001800. doi: 10.1161/JAHA.112.001800.
    1. Yamamoto S, Yancey PG, Ikizler TA, et al. Dysfunctional high-density lipoprotein in patients on chronic hemodialysis. J Am Coll Cardiol. 2012;60:2372–2379. doi: 10.1016/j.jacc.2012.09.013.
    1. Zheng Z, Jayaram R, Jiang L, Emberson J, Zhao Y, Li Q, Du J, Guarguagli S, Hill M, Chen Z. Perioperative rosuvastatin in cardiac surgery. N Engl J Med. 2016;374:1744–1753. doi: 10.1056/NEJMoa1507750.
    1. Park JH, Shim J-K, Song J-W, Soh S, Kwak Y-L. Effect of atorvastatin on the incidence of acute kidney injury following valvular heart surgery: a randomized, placebo-controlled trial. Intensive Care Med. 2016;42:1398–1407. doi: 10.1007/s00134-016-4358-8.
    1. Billings FT, Hendricks PA, Schildcrout JS, Shi Y, Petracek MR, Byrne JG, Brown NJ. High-dose perioperative atorvastatin and acute kidney injury following cardiac surgery: a randomized clinical trial. JAMA. 2016;315:877–888. doi: 10.1001/jama.2016.0548.

Source: PubMed

3
Abonnere