Modulation of blood inflammatory markers by benralizumab in patients with eosinophilic airway diseases

Sriram Sridhar, Hao Liu, Tuyet-Hang Pham, Gautam Damera, Paul Newbold, Sriram Sridhar, Hao Liu, Tuyet-Hang Pham, Gautam Damera, Paul Newbold

Abstract

Background: Benralizumab, a humanized, afucosylated, monoclonal antibody that targets interleukin-5 receptor α, depletes eosinophils and basophils by enhanced antibody-dependent cell-mediated cytotoxicity. It demonstrated efficacy for patients with moderate to severe asthma and, in a Phase IIa trial, for chronic obstructive pulmonary disease (COPD) with eosinophilic inflammation. We investigated effects of benralizumab 100 mg every 8 weeks (first three doses every 4 weeks) subcutaneous on blood inflammatory markers through proteomic and gene-expression analyses collected during two Phase II studies of patients with eosinophilic asthma and eosinophilic COPD.

Methods: Serum samples for proteomic analysis and whole blood for gene expression analysis were collected at baseline and 52 weeks (asthma study) or 32 weeks (COPD study) post-treatment. Proteomic analyses were conducted on a custom set of 90 and 147 Rules-Based Medicine analytes for asthma and COPD, respectively. Gene expression was profiled by Affymetrix Human Genome U133 plus 2 arrays (~ 54 K probes). Gene set variation analysis (GSVA) was used to determine transcriptomic activity of immune signatures. Treatment-related differences between analytes, genes, and gene signatures were analyzed for the overall population and for patient subgroups stratified by baseline blood eosinophil count (eosinophil-high [≥300 cells/μL] and eosinophil-low [< 300 cells/μL]) via t-test and repeated measures analysis of variance.

Results: Eosinophil chemokines eotaxin-1 and eotaxin-2 were significantly upregulated (false discovery rate [FDR] < 0.05) by approximately 2.1- and 1.4-fold in the asthma study and by 2.3- and 1.7-fold in the COPD study following benralizumab treatment. Magnitude of upregulation of these two chemokines was greater for eosinophil-high patients than eosinophil-low patients in both studies. Benralizumab was associated with significant reductions (FDR < 0.05) in expression of genes associated with eosinophils and basophils, such as CLC, IL-5Rα, and PRSS33; immune-signaling complex genes (FCER1A); G-protein-coupled receptor genes (HRH4, ADORA3, P2RY14); and further immune-related genes (ALOX15 and OLIG2). The magnitude of downregulation of gene expression was greater for eosinophil-high than eosinophil-low patients. GSVA on immune signatures indicated significant treatment reductions (FDR < 0.05) in eosinophil-associated signatures.

Conclusions: Benralizumab is highly selective, modulating blood proteins or genes associated with eosinophils or basophils. Modulated protein and gene expression patterns are most prominently altered in eosinophil-high vs. eosinophil-low patients.

Trial registration: NCT01227278 and NCT01238861 .

Keywords: Asthma; Basophils; Benralizumab; Blood; Chronic obstructive pulmonary disease; Eosinophils; Gene expression; Gene set variation analysis; Inflammatory markers; Proteomics.

Conflict of interest statement

Ethics approval and consent to participate

Protocols of both studies included in this analysis were developed by the chief investigators and MedImmune and were approved by the institutional review board at each study site. Participants provided written informed consent, and the studies were performed in accordance with the Declaration of Helsinki.

Consent for publication

Not applicable.

Competing interests

All authors are employees of AstraZeneca/MedImmune LLC, the manufacturer of benralizumab.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Protein analyte concentrations of eotaxin-1 and eotaxin-2 in patients with asthma and COPD. Concentrations of eotaxin-1 and eotaxin-2 at baseline and after 52 weeks of treatment with benralizumab vs. placebo in the overall population of the asthma cohort (a and c). Concentrations of eotaxin-1 and eotaxin-2 at baseline and after 32 weeks of treatment with benralizumab vs. placebo in the overall population of the COPD cohort (b and d). Boxplots display the 25th–75th percentile values, with bars denoting median values. Boxes are labeled with the mean concentration per treatment arm. The dotted line denotes the analyte LLOQ. COPD, chronic obstructive pulmonary disease; FDR, false discovery rate; LLOQ, lower limit of quantification
Fig. 2
Fig. 2
GSVA scores for eosinophil signatures in patients with asthma and COPD over time. GSVA signature scores of the four eosinophil-related gene signatures for the overall population in the asthma cohort treated with benralizumab vs. placebo (a, c, e, and g). GSVA signature scores of the four eosinophil-related gene signatures for the overall population in the COPD cohort treated with benralizumab vs. placebo (b, d, f, and h). Signature scores ranged from − 1 to 1, with negative scores indicating relative decreases in signature expression and positive scores indicating relative elevations in signature expression. Mean GSVA scores per signature are given for each treatment arm at each timepoint with standard error bars shown. COPD chronic obstructive pulmonary disease, GSVA gene set variation analysis

References

    1. Benton MJ, Lim TK, Ko FWS, Kan OK, Mak JCW. Year in review 2017: Chronic obstructive pulmonary disease and asthma. Respirology. 2018;23:538–45. doi: 10.1111/resp.13285.
    1. Peters SP, Ferguson G, Deniz Y, Reisner C. Uncontrolled asthma: a review of the prevalence, disease burden and options for treatment. Respir Med. 2006;100:1139–1151. doi: 10.1016/j.rmed.2006.03.031.
    1. Halpin DM, Miravitlles M, Metzdorf N, Celli B. Impact and prevention of severe exacerbations of COPD: a review of the evidence. Int J Chron Obstruct Pulmon Dis. 2017;12:2891–2908. doi: 10.2147/COPD.S139470.
    1. Nurmagambetov T, Kuwahara R, Garbe P. The economic burden of asthma in the United States, 2008–2013. Ann Am Thorac Soc. 2018;15:348–56. doi: 10.1513/AnnalsATS.201703-259OC.
    1. Global Strategy for the Diagnosis, Management and Prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2018. . Accessed 21 Mar 2018.
    1. Turner AM, Tamasi L, Schleich F, Hoxha M, Horvath I, Louis R, et al. Clinically relevant subgroups in COPD and asthma. Eur Respir Rev. 2015;24:283–298. doi: 10.1183/16000617.00009014.
    1. Heaney LG, McGarvey LP. Personalised medicine for asthma and chronic obstructive pulmonary disease. Respiration. 2017;93:153–161. doi: 10.1159/000455395.
    1. Zhang JY, Wenzel SE. Tissue and BAL based biomarkers in asthma. Immunol Allergy Clin N Am. 2007;27:623–632. doi: 10.1016/j.iac.2007.09.003.
    1. Price D, Wilson AM, Chisholm A, Rigazio A, Burden A, Thomas M, et al. Predicting frequent asthma exacerbations using blood eosinophil count and other patient data routinely available in clinical practice. J Asthma Allergy. 2016;9:1–12. doi: 10.2147/JAA.S111170.
    1. Garcia G, Taille C, Laveneziana P, Bourdin A, Chanez P, Humbert M. Anti-interleukin-5 therapy in severe asthma. Eur Respir Rev. 2013;22:251–257. doi: 10.1183/09059180.00004013.
    1. Hospers JJ, Schouten JP, Weiss ST, Postma DS, Rijcken B. Eosinophilia is associated with increased all-cause mortality after a follow-up of 30 years in a general population sample. Epidemiology. 2000;11:261–268. doi: 10.1097/00001648-200005000-00006.
    1. Talini D, Novelli F, Bacci E, Bartoli M, Cianchetti S, Costa F, et al. Sputum eosinophilia is a determinant of FEV1 decline in occupational asthma: results of an observational study. BMJ Open. 2015;5:e005748. doi: 10.1136/bmjopen-2014-005748.
    1. Kolsum U, Ravi A, Hitchen P, Maddi S, Southworth T, Singh D. Clinical characteristics of eosinophilic COPD versus COPD patients with a history of asthma. Respir Res. 2017;18:73. doi: 10.1186/s12931-017-0559-0.
    1. Siva R, Green RH, Brightling CE, Shelley M, Hargadon B, McKenna S, et al. Eosinophilic airway inflammation and exacerbations of COPD: a randomised controlled trial. Eur Respir J. 2007;29:906–913. doi: 10.1183/09031936.00146306.
    1. Woodruff PG, Modrek B, Choy DF, Jia G, Abbas AR, Ellwanger A, et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med. 2009;180:388–395. doi: 10.1164/rccm.200903-0392OC.
    1. Chung KF, Wenzel SE, Brozek JL, Bush A, Castro M, Sterk PJ, et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J. 2014;43:343–373. doi: 10.1183/09031936.00202013.
    1. Wenzel SE, Covar R. Update in asthma 2005. Am J Respir Crit Care Med. 2006;173:698–706. doi: 10.1164/rccm.2601007.
    1. Pavord ID, Chanez P, Criner GJ, Kerstjens HAM, Korn S, Lugogo N, et al. Mepolizumab for eosinophilic chronic obstructive pulmonary disease. N Engl J Med. 2017;377:1613–1629. doi: 10.1056/NEJMoa1708208.
    1. McEvoy CE, Niewoehner DE. Adverse effects of corticosteroid therapy for COPD. Chest. 1997;111:732–743. doi: 10.1378/chest.111.3.732.
    1. Heffler E, Nascimento Girardi Madeira L, Ferrando M, Puggioni F, Racca F, Malvezzi L, et al. Inhaled Corticosteroids Safety and Adverse Effects in Patients with Asthma. J Allergy Clin Immunol Pract. 2018; doi:10.1016/j.jaip.2018.01.025.
    1. Kolbeck R, Kozhich A, Koike M, Peng L, Andersson CK, Damschroder MM, et al. MEDI-563, a humanized anti-IL-5 receptor alpha mAb with enhanced antibody-dependent cell-mediated cytotoxicity function. J Allergy Clin Immunol. 2010;125:1344–1353. doi: 10.1016/j.jaci.2010.04.004.
    1. Pham TH, Damera G, Newbold P, Ranade K. Reductions in eosinophil biomarkers by benralizumab in patients with asthma. Respir Med. 2016;111:21–29. doi: 10.1016/j.rmed.2016.01.003.
    1. FASENRA™ (benralizumab) prescribing information. November 2017. . Accessed 04 Apr 2018.
    1. Castro M, Wenzel SE, Bleecker ER, Pizzichini E, Kuna P, Busse WW, et al. Benralizumab, an anti-interleukin 5 receptor alpha monoclonal antibody, versus placebo for uncontrolled eosinophilic asthma: a phase 2b randomised dose-ranging study. Lancet Respir Med. 2014;2:879–890. doi: 10.1016/S2213-2600(14)70201-2.
    1. Brightling CE, Bleecker ER, Panettieri RA, Jr, Bafadhel M, She D, Ward CK, et al. Benralizumab for chronic obstructive pulmonary disease and sputum eosinophilia: a randomised, double-blind, placebo-controlled, phase 2a study. Lancet Respir Med. 2014;2:891–901. doi: 10.1016/S2213-2600(14)70187-0.
    1. AstraZeneca News Release. “AstraZeneca provides update on GALATHEA Phase III trial for Fasenra in chronic obstructive pulmonary disease.” . Accessed 13 June 2018.
    1. AstraZeneca News Release. “Update on TERRANOVA Phase III trial for Fasenra in chronic obstructive pulmonary disease.” . Accessed 13 June 2018.
    1. Eck S, Castro M, Sinibaldi D, White W, Folliot K, Gossage D, et al. Benralizumab effect on blood basophil counts in adults with uncontrolled asthma. Eur Respir J. 2014;44(Suppl 58):297.
    1. Khatry DB, Gossage DL, Geba GP, Parker JM, Jarjour NN, Busse WW, et al. Discriminating sputum-eosinophilic asthma: accuracy of cutoffs in blood eosinophil measurements versus a composite index. ELEN J Allergy Clin Immunol. 2015;136:812–814. doi: 10.1016/j.jaci.2015.03.006.
    1. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. doi: 10.1186/1471-2105-14-7.
    1. Allantaz F, Cheng DT, Bergauer T, Ravindran P, Rossier MF, Ebeling M, et al. Expression profiling of human immune cell subsets identifies miRNA-mRNA regulatory relationships correlated with cell type specific expression. PLoS One. 2012;7:e29979. doi: 10.1371/journal.pone.0029979.
    1. Choy DF, Jia G, Abbas AR, Morshead KB, Lewin-Koh N, Dua R, et al. Peripheral blood gene expression predicts clinical benefit from anti-IL-13 in asthma. J Allergy Clin Immunol. 2016;138:1230–1233. doi: 10.1016/j.jaci.2016.06.008.
    1. Tashkin DP, Wechsler ME. Role of eosinophils in airway inflammation of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2018;13:335–349. doi: 10.2147/COPD.S152291.
    1. Kostikas K, Brindicci C, Patalano F. Blood eosinophils as biomarkers to drive treatment choices in asthma and COPD. Curr Drug Targets. 2018. 10.2174/1389450119666180212120012.
    1. Nixon J, Newbold P, Mustelin T, Anderson GP, Kolbeck R. Monoclonal antibody therapy for the treatment of asthma and chronic obstructive pulmonary disease with eosinophilic inflammation. Pharmacol Ther. 2017;169:57–77. doi: 10.1016/j.pharmthera.2016.10.016.
    1. Paplinska M, Hermanowicz-Salamon J, Nejman-Gryz P, Bialek-Gosk K, Rubinsztajn R, Arcimowicz M, et al. Expression of eotaxins in the material from nasal brushing in asthma, allergic rhinitis and COPD patients. Cytokine. 2012;60:393–399. doi: 10.1016/j.cyto.2012.07.001.
    1. Dent G, Hadjicharalambous C, Yoshikawa T, Handy RL, Powell J, Anderson IK, et al. Contribution of eotaxin-1 to eosinophil chemotactic activity of moderate and severe asthmatic sputum. Am J Respir Crit Care Med. 2004;169:1110–1117. doi: 10.1164/rccm.200306-855OC.
    1. Scheicher ME, Teixeira MM, Cunha FQ, Teixeira AL, Jr, Filho JT, Vianna EO. Eotaxin-2 in sputum cell culture to evaluate asthma inflammation. Eur Respir J. 2007;29:489–495. doi: 10.1183/09031936.00060205.
    1. Farahi N, Cowburn AS, Upton PD, Deighton J, Sobolewski A, Gherardi E, et al. Eotaxin-1/CC chemokine ligand 11: a novel eosinophil survival factor secreted by human pulmonary artery endothelial cells. J Immunol. 2007;179:1264–1273. doi: 10.4049/jimmunol.179.2.1264.
    1. D'Armiento JM, Scharf SM, Roth MD, Connett JE, Ghio A, Sternberg D, et al. Eosinophil and T cell markers predict functional decline in COPD patients. Respir Res. 2009;10:113. doi: 10.1186/1465-9921-10-113.
    1. Stein ML, Villanueva JM, Buckmeier BK, Yamada Y, Filipovich AH, Assa'ad AH, et al. Anti-IL-5 (mepolizumab) therapy reduces eosinophil activation ex vivo and increases IL-5 and IL-5 receptor levels. J Allergy Clin Immunol. 2008;121:1473–1483. doi: 10.1016/j.jaci.2008.02.033.
    1. Lavie F, Miceli-Richard C, Ittah M, Sellam J, Gottenberg JE, Mariette X. Increase of B cell-activating factor of the TNF family (BAFF) after rituximab treatment: insights into a new regulating system of BAFF production. Ann Rheum Dis. 2007;66:700–703. doi: 10.1136/ard.2006.060772.
    1. Folster-Holst R, Papakonstantinou E, Rudrich U, Buchner M, Pite H, Gehring M, et al. Childhood atopic dermatitis-brain-derived neurotrophic factor correlates with serum eosinophil cationic protein and disease severity. Allergy. 2016;71:1062–1065. doi: 10.1111/all.12916.
    1. Namura K, Hasegawa G, Egawa M, Matsumoto T, Kobayashi R, Yano T, et al. Relationship of serum brain-derived neurotrophic factor level with other markers of disease severity in patients with atopic dermatitis. Clin Immunol. 2007;122:181–186. doi: 10.1016/j.clim.2006.10.011.
    1. Watanabe T, Fajt ML, Trudeau JB, Voraphani N, Hu H, Zhou X, et al. Brain-derived neurotrophic factor expression in asthma. Association with severity and type 2 inflammatory processes. Am J Respir Cell Mol Biol. 2015;53:844–852. doi: 10.1165/rcmb.2015-0015OC.
    1. Calafat J, Janssen H, Knol EF, Weller PF, Egesten A. Ultrastructural localization of Charcot-Leyden crystal protein in human eosinophils and basophils. Eur J Haematol. 1997;58:56–66. doi: 10.1111/j.1600-0609.1997.tb01411.x.
    1. Ackerman SJ, Gleich GJ, Weller PF, Ottesen EA. Eosinophilia and elevated serum levels of eosinophil major basic protein and Charcot-Leyden crystal protein (lysophospholipase) after treatment of patients with Bancroft's filariasis. J Immunol. 1981;127:1093–1098.
    1. Ackerman SJ, Weil GJ, Gleich GJ. Formation of Charcot-Leyden crystals by human basophils. J Exp Med. 1982;155:1597–1609. doi: 10.1084/jem.155.6.1597.
    1. Golightly LM, Thomas LL, Dvorak AM, Ackerman SJ. Charcot-Leyden crystal protein in the degranulation and recovery of activated basophils. J Leukoc Biol. 1992;51:386–392. doi: 10.1002/jlb.51.4.386.
    1. Toyama S, Okada N, Matsuda A, Morita H, Saito H, Fujisawa T, et al. Human eosinophils constitutively express a unique serine protease, PRSS33. Allergol Int. 2017;66:463–471. doi: 10.1016/j.alit.2017.01.001.
    1. Hwang SM, Uhm TG, Lee SK, Kong SK, Jung KH, Binas B, et al. Olig2 is expressed late in human eosinophil development and controls Siglec-8 expression. J Leukoc Biol. 2016;100:711–723. doi: 10.1189/jlb.1A0715-314RRR.
    1. Cheng YX, Foster B, Holland SM, Klion AD, Nutman TB, Casale TB, et al. CD2 identifies a monocyte subpopulation with immunoglobulin E-dependent, high-level expression of Fc epsilon RI. Clin Exp Allergy. 2006;36:1436–45. doi: 10.1111/j.1365-2222.2006.02578.x.
    1. Oda T, Morikawa N, Saito Y, Masuho Y, Matsumoto S. Molecular cloning and characterization of a novel type of histamine receptor preferentially expressed in leukocytes. J Biol Chem. 2000;275:36781–36786. doi: 10.1074/jbc.M006480200.
    1. Ponath PD, Qin S, Post TW, Wang J, Wu L, Gerard NP, et al. Molecular cloning and characterization of a human eotaxin receptor expressed selectively on eosinophils. J Exp Med. 1996;183:2437–2448. doi: 10.1084/jem.183.6.2437.
    1. Uguccioni M, Mackay CR, Ochensberger B, Loetscher P, Rhis S, LaRosa GJ, et al. High expression of the chemokine receptor CCR3 in human blood basophils. Role in activation by eotaxin, MCP-4, and other chemokines. J Clin Invest. 1997;100:1137–1143. doi: 10.1172/JCI119624.
    1. Takatsu K, Takaki S, Hitoshi Y. Interleukin-5 and its receptor system: implications in the immune system and inflammation. Adv Immunol. 1994;57:145–190. doi: 10.1016/S0065-2776(08)60673-2.
    1. Toba K, Koike T, Shibata A, Hashimoto S, Takahashi M, Masuko M, et al. Novel technique for the direct flow cytofluorometric analysis of human basophils in unseparated blood and bone marrow, and the characterization of phenotype and peroxidase of human basophils. Cytometry. 1999;35:249–259. doi: 10.1002/(SICI)1097-0320(19990301)35:3<249::AID-CYTO8>;2-O.
    1. Yamada T, Sun Q, Zeibecoglou K, Bungre J, North J, Kay AB, et al. IL-3, IL-5, granulocyte-macrophage colony-stimulating factor receptor alpha-subunit, and common beta-subunit expression by peripheral leukocytes and blood dendritic cells. J Allergy Clin Immunol. 1998;101:677–682. doi: 10.1016/S0091-6749(98)70177-0.
    1. Odemuyiwa SO, Ghahary A, Li Y, Puttagunta L, Lee JE, Musat-Marcu S, et al. Cutting edge: human eosinophils regulate T cell subset selection through indoleamine 2,3-dioxygenase. J Immunol. 2004;173:5909–5913. doi: 10.4049/jimmunol.173.10.5909.
    1. Ferreira MA, Jansen R, Willemsen G, Penninx B, Bain LM, Vicente CT, et al. Gene-based analysis of regulatory variants identifies 4 putative novel asthma risk genes related to nucleotide synthesis and signaling. J Allergy Clin Immunol. 2017;139:1148–1157. doi: 10.1016/j.jaci.2016.07.017.
    1. Esnault S, Kelly EA, Schwantes EA, Liu LY, DeLain LP, Hauer JA, et al. Identification of genes expressed by human airway eosinophils after an in vivo allergen challenge. PLoS One. 2013;8:e67560. doi: 10.1371/journal.pone.0067560.
    1. Brown RA, Spina D, Page CP. Adenosine receptors and asthma. Br J Pharmacol. 2008;153(Suppl 1):S446–S456.
    1. Reeves JJ, Harris CA, Hayes BP, Butchers PR, Sheehan MJ. Studies on the effects of adenosine A3 receptor stimulation on human eosinophils isolated from non-asthmatic or asthmatic donors. Inflamm Res. 2000;49:666–672. doi: 10.1007/s000110050644.
    1. Kim JT, Gleich GJ, Kita H. Roles of CD9 molecules in survival and activation of human eosinophils. J Immunol. 1997;159:926–933.
    1. Turk J, Maas RL, Brash AR, Roberts LJ, 2nd, Oates JA. Arachidonic acid 15-lipoxygenase products from human eosinophils. J Biol Chem. 1982;257:7068–7076.
    1. Temple R, Allen E, Fordham J, Phipps S, Schneider HC, Lindauer K, et al. Microarray analysis of eosinophils reveals a number of candidate survival and apoptosis genes. Am J Respir Cell Mol Biol. 2001;25:425–433. doi: 10.1165/ajrcmb.25.4.4456.
    1. Dahl C, Hoffmann HJ, Saito H, Schiøtz PO. Human mast cells express receptors for IL-3, IL-5 and GM-CSF; a partial map of receptors on human mast cells cultured in vitro. Allergy. 2004;59:1087–1096. doi: 10.1111/j.1398-9995.2004.00606.x.
    1. Wilson TM, Maric I, Shukla J, Brown M, Santos C, Simakova O, et al. IL-5 receptor α levels in patients with marked eosinophilia or mastocytosis. J Allergy Clin Immunol. 2011;128:1086–1092. doi: 10.1016/j.jaci.2011.05.032.

Source: PubMed

3
Abonnere