SirT1 regulates adipose tissue inflammation

Matthew P Gillum, Maya E Kotas, Derek M Erion, Romy Kursawe, Paula Chatterjee, Kevin T Nead, Eric S Muise, Jennifer J Hsiao, David W Frederick, Shin Yonemitsu, Alexander S Banks, Li Qiang, Sanjay Bhanot, Jerrold M Olefsky, Dorothy D Sears, Sonia Caprio, Gerald I Shulman, Matthew P Gillum, Maya E Kotas, Derek M Erion, Romy Kursawe, Paula Chatterjee, Kevin T Nead, Eric S Muise, Jennifer J Hsiao, David W Frederick, Shin Yonemitsu, Alexander S Banks, Li Qiang, Sanjay Bhanot, Jerrold M Olefsky, Dorothy D Sears, Sonia Caprio, Gerald I Shulman

Abstract

Objective: Macrophage recruitment to adipose tissue is a reproducible feature of obesity. However, the events that result in chemokine production and macrophage recruitment to adipose tissue during states of energetic excess are not clear. Sirtuin 1 (SirT1) is an essential nutrient-sensing histone deacetylase, which is increased by caloric restriction and reduced by overfeeding. We discovered that SirT1 depletion causes anorexia by stimulating production of inflammatory factors in white adipose tissue and thus posit that decreases in SirT1 link overnutrition and adipose tissue inflammation.

Research design and methods: We used antisense oligonucleotides to reduce SirT1 to levels similar to those seen during overnutrition and studied SirT1-overexpressing transgenic mice and fat-specific SirT1 knockout animals. Finally, we analyzed subcutaneous adipose tissue biopsies from two independent cohorts of human subjects.

Results: We found that inducible or genetic reduction of SirT1 in vivo causes macrophage recruitment to adipose tissue, whereas overexpression of SirT1 prevents adipose tissue macrophage accumulation caused by chronic high-fat feeding. We also found that SirT1 expression in human subcutaneous fat is inversely related to adipose tissue macrophage infiltration.

Conclusions: Reduction of adipose tissue SirT1 expression, which leads to histone hyperacetylation and ectopic inflammatory gene expression, is identified as a key regulatory component of macrophage influx into adipose tissue during overnutrition in rodents and humans. Our results suggest that SirT1 regulates adipose tissue inflammation by controlling the gain of proinflammatory transcription in response to inducers such as fatty acids, hypoxia, and endoplasmic reticulum stress.

Figures

FIG. 1.
FIG. 1.
Knockdown of SirT1 mimicking that seen in obesity causes anorexia-driven weight loss and TNF-α elevation. A–C: Body weight (***P < 0.001) (n = 8–12/group) (A), anorexia (n = 12/group) (B), and loss of epididymal fat mass (n = 3–4/group) (C) of ad libitum fed rats treated with ASO biweekly for 1 month. D: Results from parallel measurement of plasma appetite regulatory hormones in animals treated with control or SirT1 ASO showing elevated TNF-α and possibly IL-6 in the SirT1 group (n = 7–8/group, pooled). E: Plasma TNF-α levels (n = 5/group). F: Adipose tissue levels of TNF-α (n = 3–4/group). G: SirT1 protein expression in WAT from animals treated with control ASO and fed normal chow, animals treated with SirT1 ASO and fed normal chow, and mildly diabetic animals fed high-fat/high-fructose chow. H: Quantification of representative data presented in F (n = 6/group). I: Plasma TNF-α levels in normal chow–fed control ASO–treated rats, normal chow–fed SirT1 ASO–treated rats, and high-fat diet–fed, control ASO–treated rats by electrochemiluminescence (n = 4–5/group). HFD, high-fat diet.
FIG. 2.
FIG. 2.
SirT1 knockdown/deletion causes adipose tissue inflammation and macrophage infiltration. A: Cytokine array performed on plasma from normal chow–fed control ASO– and SirT1 ASO–treated rats (n = 4/group). *P < 0.05, **P < 0.01 (left). Cytokine array performed on plasma from chow-fed wild-type and fat-specific SirT1 knockout mice (n = 4/group). *P < 0.08, **P < 0.03 (right). B: Plasma IL-10 levels collected at the onset of hypophagia (1 week) (n = 10/group) and plasma IL-4 after 1 month of ASO treatment. C: Representative hematoxylin and eosin staining from epididymal WAT of individual rats fed normal chow and treated with control ASO or SirT1 ASO (representative of 5 rats/group). D: Reduced adipocyte diameter in SirT1 ASO–treated rats. E: Adipose tissue macrophage content, as assessed by FACS, and adipose tissue CD68 mRNA expression in mice (n = 5/group). F: Macrophage/monocyte (CD68, CD115) and macrophage/dendritic cell (CD11c) marker mRNA expression in rat adipose tissue (n = 4–7). G: Macrophage-related mRNA abundance in adipose tissue from SirT1 fat-specific knockout mice fed a chow diet (8–12 weeks of age, n = 4–6/group). H: Macrophage marker/cytokine mRNA abundance in adipose tissue from SirT1 fat-specific knockout mice fed a high-fat diet for 1 month (n = 3–7/group). GM-CSF, granulocyte-macrophage colony-stimulating factor; KO, knockout; N.S., nonsignificant. (A high-quality digital representation of this figure is available in the online issue.)
FIG. 3.
FIG. 3.
SirT1 knockdown in WAT results in NF-κB nuclear localization and gene expression through reduction of H3K9 deacetylation. A and B: Representative (n = 5/group) images showing that SirT1 knockdown stimulates nuclear translocation of NF-κB in rat WAT. Adipocytes are stained for caveolin (green) and NF-κB p65 nuclear localization sequence (red). Nuclei are stained with DAPI (blue). Inset box is expanded to individual channels in B.1-B.3 to demonstrate NF-κB and DAPI colocalization. Some NF-κB–positive nuclei (arrows) are in adipocytes. Because the nuclear localization sequence is masked in the cytosol, nonnuclear staining is nonspecific (i.e., erythrocyte or other autofluorescence). C: SirT1 knockdown increases abundance of phosphorylated (Ser536) and total p65 in rat WAT nuclear lysates. Line separates noncontiguous lanes from the same blot. D: Chow-fed fat-specific SirT1 knockout mice have increased phospho-p65 in WAT ∼12 h after stimulation with LPS (50 μg i.p.). E: SirT1 knockdown increases adipose tissue cytokine, complement, and TLR mRNA expression (n = 5–7/group). *P < 0.05, **P < 0.01. F: SirT1 knockdown increases H3K9 acetylation. (A high-quality digital representation of this figure is available in the online issue.)
FIG. 4.
FIG. 4.
Overexpression of SirT1 reduces high-fat diet–induced increases in WAT macrophage content. A and B: Reduced F4/80 (A) and CD68 (B) expression in WAT of high-fat diet–fed SirT1-overexpressing mice by qPCR. C: Verification of SirT1 overexpression in WAT (n = 5/group). D: NEMO and CASP8 expression, also in WAT (n = 3/group).
FIG. 5.
FIG. 5.
SirT1 transcript level is inversely correlated with both BMI and adipose tissue macrophage content in humans. A: Control, obese, and severely obese subjects were stratified by BMI. Obese and severely obese subjects have decreased SirT1 expression (B) and increased macrophage content (C) in subcutaneous adipose tissue. Macrophages (CD68+ cells) within an entire section were counted by two independent observers using a light microscope. % macrophages = number of macrophages / number of adipocytes × 100. Obese and severely obese subjects have elevated HOMA-IR (D). **P < 0.01, *P < 0.05, #P < 0.10. Note: 18 of the 45 subjects examined are also being studied for the contributions of a gene polymorphism to SirT1 gene expression.
FIG. 6.
FIG. 6.
SirT1 transcript level is inversely correlated with macrophage markers in human adults. A: Correlation between SirT1 mRNA expression and CD14 (a macrophage/monocyte marker) in adipose tissue of a mixed-weight population of humans. B: Correlation between SirT1 and CD86 mRNA (another monocyte/macrophage marker) in WAT from the same group of subjects. C: Correlation between SirT1 and CX3CL1 (a monocyte chemoattractant) mRNA in WAT from the same group of subjects. DF: SirT1 knockdown increases expression of CX3CL1, CX3CR1, and CD14 in rodent WAT. G: Schematic model of SirT1 regulation of inflammation. SirT1 deacetylation of inflammatory gene promoters causes decreased cytokine production in response to stimulation of inflammatory sensors by fatty acids, hypoxia, and ER stress. In turn, decreased SirT1 expression in obesity sensitizes these networks to activation by stressors. FFA, free fatty acid; NLR, NOD-like receptor.

References

    1. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW., Jr Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003;112:1796–1808
    1. Cinti S, Mitchell G, Barbatelli G, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 2005;46:2347–2355
    1. Arkan MC, Hevener AL, Greten FR, et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 2005;11:191–198
    1. Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulin resistance. Nature 2002;420:333–336
    1. Sabio G, Das M, Mora A, et al. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 2008;322:1539–1543
    1. Ozcan U, Cao Q, Yilmaz E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004;306:457–461
    1. Hosogai N, Fukuhara A, Oshima K, et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 2007;56:901–911
    1. Halberg N, Khan T, Trujillo ME, et al. Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. Mol Cell Biol 2009;29:4467–4483
    1. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 2006;116:3015–3025
    1. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005;434:113–118
    1. Rodgers JT, Puigserver P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci USA 2007;104:12861–12866
    1. Chen D, Guarente L. SIR2: a potential target for calorie restriction mimetics. Trends Mol Med 2007;13:64–71
    1. Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 2009;9:327–338
    1. Erion DM, Yonemitsu S, Nie Y, et al. SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats. Proc Natl Acad Sci USA 2009;106:11288–11293
    1. Banks AS, Kon N, Knight C, et al. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab 2008;8:333–341
    1. Qiao L, Shao J. SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein alpha transcriptional complex. J Biol Chem 2006;281:39915–39924
    1. Costa CD, Hammes TO, Rohden F, et al. SirT1 transcription is decreased in visceral adipose tissue of morbidly obese patients with severe hepatic steatosis. Obes Surg 2009;20:633–639
    1. Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 2004;23:2369–2380
    1. Ghosh HS, Spencer JV, Ng B, McBurney MW, Robbins PD. Sirt1 interacts with transducin-like enhancer of split-1 to inhibit nuclear factor kappaB-mediated transcription. Biochem J 2007;408:105–111
    1. Yoshizaki T, Milne JC, Imamura T, et al. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol Cell Biol 2009;29:1363–1374
    1. Pfluger PT, Herranz D, Velasco-Miguel S, Serrano M, Tschöp MH. Sirt1 protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci USA 2008;105:9793–9798
    1. Yoshizaki T, Schenk S, Imamura T, et al. SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am J Physiol Endocrinol Metab 2009;298:E419–E428
    1. Kaeberlein M, McDonagh T, Heltweg B, et al. Substrate-specific activation of sirtuins by resveratrol. J Biol Chem 2005;280:17038–17045
    1. Borra MT, Smith BC, Denu JM. Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 2005;280:17187–17195
    1. Pacholec M, Bleasdale JE, Chrunyk B, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem 2010;285:8340–8351
    1. Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 2004;16:93–105
    1. Liu TF, Yoza BK, El Gazzar M, Vachharajani VT, McCall CE. NAD+-dependent SIRT1 deacetylase participates in epigenetic reprogramming during endotoxin tolerance. J Biol Chem 2011;286:9856–9864
    1. Luo N, Liu J, Chung BH, et al. Macrophage adiponectin expression improves insulin sensitivity and protects against inflammation and atherosclerosis. Diabetes 2010;59:791–799
    1. Cali’ AM, Bonadonna RC, Trombetta M, Weiss R, Caprio S. Metabolic abnormalities underlying the different prediabetic phenotypes in obese adolescents. J Clin Endocrinol Metab 2008;93:1767–1773
    1. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412–419
    1. Burgert TS, Taksali SE, Dziura J, et al. Alanine aminotransferase levels and fatty liver in childhood obesity: associations with insulin resistance, adiponectin, and visceral fat. J Clin Endocrinol Metab 2006;91:4287–4294
    1. Cali AM, De Oliveira AM, Kim H, et al. Glucose dysregulation and hepatic steatosis in obese adolescents: is there a link? Hepatology 2009;49:1896–1903
    1. Sears DD, Hsiao G, Hsiao A, et al. Mechanisms of human insulin resistance and thiazolidinedione-mediated insulin sensitization. Proc Natl Acad Sci USA 2009;106:18745–18750
    1. Nagai Y, Yonemitsu S, Erion DM, et al. The role of peroxisome proliferator-activated receptor gamma coactivator-1 beta in the pathogenesis of fructose-induced insulin resistance. Cell Metab 2009;9:252–264
    1. Matarese G, La Cava A. The intricate interface between immune system and metabolism. Trends Immunol 2004;25:193–200
    1. Nie Y, Erion DM, Yuan Z, et al. STAT3 inhibition of gluconeogenesis is downregulated by SirT1. Nat Cell Biol 2009;11:492–500
    1. Kanda H, Tateya S, Tamori Y, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006;116:1494–1505
    1. Mamane Y, Chung Chan C, Lavallee G, et al. The C3a anaphylatoxin receptor is a key mediator of insulin resistance and functions by modulating adipose tissue macrophage infiltration and activation. Diabetes 2009;58:2006–2017
    1. Kosteli A, Sugaru E, Haemmerle G, et al. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J Clin Invest 2010;120:3466–3479
    1. Kawahara TL, Michishita E, Adler AS, et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 2009;136:62–74
    1. Makris C, Godfrey VL, Krähn-Senftleben G, et al. Female mice heterozygous for IKK gamma/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. Mol Cell 2000;5:969–979
    1. Pasparakis M. Regulation of tissue homeostasis by NF-kappaB signalling: implications for inflammatory diseases. Nat Rev Immunol 2009;9:778–788
    1. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007;117:175–184
    1. Patsouris D, Li PP, Thapar D, Chapman J, Olefsky JM, Neels JG. Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell Metab 2008;8:301–309
    1. Gordon S. Alternative activation of macrophages. Nat Rev Immunol 2003;3:23–35
    1. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest 2000;106:171–176
    1. Savage DB, Petersen KF, Shulman GI. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev 2007;87:507–520
    1. Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007;56:1761–1772
    1. Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001;107:149–159
    1. Picard F, Kurtev M, Chung N, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004;429:771–776

Source: PubMed

3
Abonnere