Perioperative redistribution of regional ventilation and pulmonary function: a prospective observational study in two cohorts of patients at risk for postoperative pulmonary complications

Maria Bauer, Anne Opitz, Jörg Filser, Hendrik Jansen, Rainer H Meffert, Christoph T Germer, Norbert Roewer, Ralf M Muellenbach, Markus Kredel, Maria Bauer, Anne Opitz, Jörg Filser, Hendrik Jansen, Rainer H Meffert, Christoph T Germer, Norbert Roewer, Ralf M Muellenbach, Markus Kredel

Abstract

Background: Postoperative pulmonary complications (PPCs) increase morbidity and mortality of surgical patients, duration of hospital stay and costs. Postoperative atelectasis of dorsal lung regions as a common PPC has been described before, but its clinical relevance is insufficiently examined. Pulmonary electrical impedance tomography (EIT) enables the bedside visualization of regional ventilation in real-time within a transversal section of the lung. Dorsal atelectasis or effusions might cause a ventral redistribution of ventilation. We hypothesized the existence of ventral redistribution in spontaneously breathing patients during their recovery from abdominal and peripheral surgery and that vital capacity is reduced if regional ventilation shifts to ventral lung regions.

Methods: This prospective observational study included 69 adult patients undergoing elective surgery with an expected intermediate or high risk for PPCs. Patients undergoing abdominal and peripheral surgery were recruited to obtain groups of equal size. Patients received general anesthesia with and without additional regional anesthesia. On the preoperative, the first and the third postoperative day, EIT was performed at rest and during spirometry (forced breathing). The center of ventilation in dorso-ventral direction (COVy) was calculated.

Results: Both groups received intraoperative low tidal volume ventilation. Postoperative ventral redistribution of ventilation (forced breathing COVy; preoperative: 16.5 (16.0-17.3); first day: 17.8 (16.9-18.2), p < 0.004; third day: 17.4 (16.2-18.2), p = 0.020) and decreased forced vital capacity in percentage of predicted values (FVC%predicted) (median: 93, 58, 64%, respectively) persisted after abdominal surgery. In addition, dorsal to ventral shift was associated with a decrease of the FVC%predicted on the third postoperative day (r = - 0.66; p < 0.001). A redistribution of pulmonary ventilation was not observed after peripheral surgery. FVC%predicted was only decreased on the first postoperative day (median FVC%predicted on the preoperative, first and third day: 85, 81 and 88%, respectively). In ten patients occurred pulmonary complications after abdominal surgery also in two patients after peripheral surgery.

Conclusions: After abdominal surgery ventral redistribution of ventilation persisted up to the third postoperative day and was associated with decreased vital capacity. The peripheral surgery group showed only minor changes in vital capacity, suggesting a role of the location of surgery for postoperative redistribution of pulmonary ventilation.

Trial registration: This prospective observational single centre study was submitted to registration prior to patient enrollment at ClinicalTrials.gov (NCT02419196, Date of registration: December 1, 2014). Registration was finalized at April 17, 2015.

Keywords: Electrical impedance tomography; General anaesthesia; Postoperative complications; Pulmonary function tests.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Electric impedance tomography summation images during forced breathing in the abdominal surgery cohort over time. Summation images of normalized tidal images in 30 (preoperative), 26 patients (first postoperative day) and 27 patients (third postoperative day) are shown. The images depict changes from normal expiration to maximal inspiration. The center of the cross represents the center of ventilation (COV). Postoperatively the full cross represents the actual COV and the dashed cross the preoperative COV
Fig. 2
Fig. 2
Distribution of regional ventilation during forced breathing and breathing at rest within four dorsal to ventral regions of equal size. a Abdominal surgical cohort. b Peripheral surgical cohort. Percentages of total impedance variation in electric impedance tomography represent the regional ventilation in the most dorsal (lines 1–8 of the 32 × 32 matrix), dorsal (lines 9–16), ventral (lines 17–24) and most ventral (lines 25–32) regions preoperatively, as well as during the first postoperative and third postoperative day
Fig. 3
Fig. 3
Association between perioperative changes in COVy and FVC%predicted during forced breathing. A scatter plot for the changes in COVy and FVC%predicted on the first (full circles) and on the third postoperative day (empty circles) is shown. Changes from preoperative to postoperative measurements were used for both variables

References

    1. Canet J, Gallart L, Gomar C, Paluzie G, Valles J, Castillo J, Sabate S, Mazo V, Briones Z, Sanchis J. Prediction of postoperative pulmonary complications in a population-based surgical cohort. Anesthesiology. 2010;113(6):1338–1350. doi: 10.1097/ALN.0b013e3181fc6e0a.
    1. Lawrence VA, Hilsenbeck SG, Mulrow CD, Dhanda R, Sapp J, Page CP. Incidence and hospital stay for cardiac and pulmonary complications after abdominal surgery. J Gen Intern Med. 1995;10(12):671–678. doi: 10.1007/BF02602761.
    1. Shander A, Fleisher LA, Barie PS, Bigatello LM, Sladen RN, Watson CB. Clinical and economic burden of postoperative pulmonary complications: patient safety summit on definition, risk-reducing interventions, and preventive strategies. Crit Care Med. 2011;39(9):2163–2172. doi: 10.1097/CCM.0b013e31821f0522.
    1. Eichenberger A, Proietti S, Wicky S, Frascarolo P, Suter M, Spahn DR, Magnusson L. Morbid obesity and postoperative pulmonary atelectasis: an underestimated problem. Anesth Analg. 2002;95(6):1788–1792. doi: 10.1097/00000539-200212000-00060.
    1. Lindberg P, Gunnarsson L, Tokics L, Secher E, Lundquist H, Brismar B, Hedenstierna G. Atelectasis and lung function in the postoperative period. Acta Anaesthesiol Scand. 1992;36(6):546–553. doi: 10.1111/j.1399-6576.1992.tb03516.x.
    1. Bodenstein M, David M, Markstaller K. Principles of electrical impedance tomography and its clinical application. Crit Care Med. 2009;37(2):713–724. doi: 10.1097/CCM.0b013e3181958d2f.
    1. Victorino JA, Borges JB, Okamoto VN, Matos GF, Tucci MR, Caramez MP, Tanaka H, Sipmann FS, Santos DC, Barbas CS, et al. Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care Med. 2004;169(7):791–800. doi: 10.1164/rccm.200301-133OC.
    1. Krause U, Becker K, Hahn G, Dittmar J, Ruschewski W, Paul T. Monitoring of regional lung ventilation using electrical impedance tomography after cardiac surgery in infants and children. Pediatr Cardiol. 2014.
    1. Elke G, Fuld MK, Halaweish AF, Grychtol B, Weiler N, Hoffman EA, Frerichs I. Quantification of ventilation distribution in regional lung injury by electrical impedance tomography and xenon computed tomography. Physiol Meas. 2013;34(10):1303–1318. doi: 10.1088/0967-3334/34/10/1303.
    1. Erlandsson K, Odenstedt H, Lundin S, Stenqvist O. Positive end-expiratory pressure optimization using electric impedance tomography in morbidly obese patients during laparoscopic gastric bypass surgery. Acta Anaesthesiol Scand. 2006;50(7):833–839. doi: 10.1111/j.1399-6576.2006.01079.x.
    1. Zhao Z, Steinmann D, Frerichs I, Guttmann J, Moller K. PEEP titration guided by ventilation homogeneity: a feasibility study using electrical impedance tomography. Crit Care. 2010;14(1):R8. doi: 10.1186/cc8860.
    1. Eronia N, Mauri T, Maffezzini E, Gatti S, Bronco A, Alban L, Binda F, Sasso T, Marenghi C, Grasselli G, et al. Bedside selection of positive end-expiratory pressure by electrical impedance tomography in hypoxemic patients: a feasibility study. Ann Intensive Care. 2017;7(1):76. doi: 10.1186/s13613-017-0299-9.
    1. Hochhausen N, Biener I, Rossaint R, Follmann A, Bleilevens C, Braunschweig T, Leonhardt S, Czaplik M. Optimizing PEEP by electrical impedance tomography in a porcine animal model of ARDS. Respir Care. 2016;62(3):340–349. doi: 10.4187/respcare.05060.
    1. Radke OC, Schneider T, Heller AR, Koch T. Spontaneous breathing during general anesthesia prevents the ventral redistribution of ventilation as detected by electrical impedance tomography: a randomized trial. Anesthesiology. 2012;116(6):1227–1234. doi: 10.1097/ALN.0b013e318256ee08.
    1. Karsten J, Heinze H, Meier T. Impact of PEEP during laparoscopic surgery on early postoperative ventilation distribution visualized by electrical impedance tomography. Minerva Anestesiol. 2014;80(2):158–166.
    1. Karsten J, Luepschen H, Grossherr M, Bruch HP, Leonhardt S, Gehring H, Meier T. Effect of PEEP on regional ventilation during laparoscopic surgery monitored by electrical impedance tomography. Acta Anaesthesiol Scand. 2011;55(7):878–886. doi: 10.1111/j.1399-6576.2011.02467.x.
    1. Pereira SM, Tucci MR, Morais CCA, Simoes CM, Tonelotto BFF, Pompeo MS, Kay FU, Pelosi P, Vieira JE, Amato MBP. Individual positive end-expiratory pressure settings optimize intraoperative mechanical ventilation and reduce postoperative atelectasis. Anesthesiology. 2018.
    1. Mazo V, Sabate S, Canet J, Gallart L, de Abreu MG, Belda J, Langeron O, Hoeft A, Pelosi P. Prospective external validation of a predictive score for postoperative pulmonary complications. Anesthesiology. 2014;121(2):219–231. doi: 10.1097/ALN.0000000000000334.
    1. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome The acute respiratory distress syndrome network. N Engl J Med. 2000;342(18):1301–1308. doi: 10.1056/NEJM200005043421801.
    1. Luepschen H, Meier T, Grossherr M, Leibecke T, Karsten J, Leonhardt S. Protective ventilation using electrical impedance tomography. Physiol Meas. 2007;28(7):S247–S260. doi: 10.1088/0967-3334/28/7/S18.
    1. Frerichs I, Hahn G, Golisch W, Kurpitz M, Burchardi H, Hellige G. Monitoring perioperative changes in distribution of pulmonary ventilation by functional electrical impedance tomography. Acta Anaesthesiol Scand. 1998;42(6):721–726. doi: 10.1111/j.1399-6576.1998.tb05308.x.
    1. Akca O, Podolsky A, Eisenhuber E, Panzer O, Hetz H, Lampl K, Lackner FX, Wittmann K, Grabenwoeger F, Kurz A, et al. Comparable postoperative pulmonary atelectasis in patients given 30% or 80% oxygen during and 2 hours after colon resection. Anesthesiology. 1999;91(4):991–998. doi: 10.1097/00000542-199910000-00019.
    1. Schaefer MS, Wania V, Bastin B, Schmalz U, Kienbaum P, Beiderlinden M, Treschan TA. Electrical impedance tomography during major open upper abdominal surgery: a pilot-study. BMC Anesthesiol. 2014;14:51. doi: 10.1186/1471-2253-14-51.
    1. Karayiannakis AJ, Makri GG, Mantzioka A, Karousos D, Karatzas G. Postoperative pulmonary function after laparoscopic and open cholecystectomy. Br J Anaesth. 1996;77(4):448–452. doi: 10.1093/bja/77.4.448.
    1. Treschan TA, Kaisers W, Schaefer MS, Bastin B, Schmalz U, Wania V, Eisenberger CF, Saleh A, Weiss M, Schmitz A, et al. Ventilation with low tidal volumes during upper abdominal surgery does not improve postoperative lung function. Br J Anaesth. 2012;109(2):263–271. doi: 10.1093/bja/aes140.
    1. Dureuil B, Cantineau JP, Desmonts JM. Effects of upper or lower abdominal surgery on diaphragmatic function. Br J Anaesth. 1987;59(10):1230–1235. doi: 10.1093/bja/59.10.1230.
    1. Hedenstierna G, Tokics L, Scaramuzzo G, Rothen HU, Edmark L, Ohrvik J. Oxygenation impairment during anesthesia: influence of age and body weight. Anesthesiology. 2019.
    1. Karsten J, Stueber T, Voigt N, Teschner E, Heinze H. Influence of different electrode belt positions on electrical impedance tomography imaging of regional ventilation: a prospective observational study. Crit Care. 2016;20(1):3. doi: 10.1186/s13054-015-1161-9.
    1. Krueger-Ziolek S, Schullcke B, Kretschmer J, Muller-Lisse U, Moller K, Zhao Z. Positioning of electrode plane systematically influences EIT imaging. Physiol Meas. 2015;36(6):1109–1118. doi: 10.1088/0967-3334/36/6/1109.
    1. Reifferscheid F, Elke G, Pulletz S, Gawelczyk B, Lautenschlager I, Steinfath M, Weiler N, Frerichs I. Regional ventilation distribution determined by electrical impedance tomography: reproducibility and effects of posture and chest plane. Respirology. 2011;16(3):523–531. doi: 10.1111/j.1440-1843.2011.01929.x.
    1. Radke OC, Schneider T, Braune A, Pirracchio R, Fischer F, Koch T. Comparison of distribution of lung aeration measured with EIT and CT in spontaneously breathing, awake patients. Biomed Mater Eng. 2016;27(4):315–325.

Source: PubMed

3
Abonnere