Dengue and other common causes of acute febrile illness in Asia: an active surveillance study in children

Maria Rosario Capeding, Mary Noreen Chua, Sri Rezeki Hadinegoro, Ismail I H M Hussain, Revathy Nallusamy, Punnee Pitisuttithum, Kusnandi Rusmil, Usa Thisyakorn, Stephen J Thomas, Ngoc Huu Tran, Dewa Nyoman Wirawan, In-Kyu Yoon, Alain Bouckenooghe, Yanee Hutagalung, Thelma Laot, Tram Anh Wartel, Maria Rosario Capeding, Mary Noreen Chua, Sri Rezeki Hadinegoro, Ismail I H M Hussain, Revathy Nallusamy, Punnee Pitisuttithum, Kusnandi Rusmil, Usa Thisyakorn, Stephen J Thomas, Ngoc Huu Tran, Dewa Nyoman Wirawan, In-Kyu Yoon, Alain Bouckenooghe, Yanee Hutagalung, Thelma Laot, Tram Anh Wartel

Abstract

Background: Common causes of acute febrile illness in tropical countries have similar symptoms, which often mimic those of dengue. Accurate clinical diagnosis can be difficult without laboratory confirmation and disease burden is generally under-reported. Accurate, population-based, laboratory-confirmed incidence data on dengue and other causes of acute fever in dengue-endemic Asian countries are needed.

Methods and principal findings: This prospective, multicenter, active fever surveillance, cohort study was conducted in selected centers in Indonesia, Malaysia, Philippines, Thailand and Vietnam to determine the incidence density of acute febrile episodes (≥ 38 °C for ≥ 2 days) in 1,500 healthy children aged 2-14 years, followed for a mean 237 days. Causes of fever were assessed by testing acute and convalescent sera from febrile participants for dengue, chikungunya, hepatitis A, influenza A, leptospirosis, rickettsia, and Salmonella Typhi. Overall, 289 participants had acute fever, an incidence density of 33.6 per 100 person-years (95% CI: 30.0; 37.8); 57% were IgM-positive for at least one of these diseases. The most common causes of fever by IgM ELISA were chikungunya (in 35.0% of in febrile participants) and S. Typhi (in 29.4%). The overall incidence density of dengue per 100 person-years was 3.4 by nonstructural protein 1 (NS1) antigen positivity (95% CI: 2.4; 4.8) and 7.3 (95% CI: 5.7; 9.2) by serology. Dengue was diagnosed in 11.4% (95% CI: 8.0; 15.7) and 23.9% (95% CI: 19.1; 29.2) of febrile participants by NS1 positivity and serology, respectively. Of the febrile episodes not clinically diagnosed as dengue, 5.3% were dengue-positive by NS1 antigen testing and 16.0% were dengue-positive by serology.

Conclusions: During the study period, the most common identified causes of pediatric acute febrile illness among the seven tested for were chikungunya, S. Typhi and dengue. Not all dengue cases were clinically diagnosed; laboratory confirmation is essential to refine disease burden estimates.

Trial registration: ClinicalTrials.gov NCT01373821.

Conflict of interest statement

I have read the journal's policy and have the following conflicts. MRC, MNC, SRH, IIHMH, RN, PP, KR, UT, SJT, NHT, DNW, and IKY are investigators in clinical trials of other compounds under development by Sanofi Pasteur. AB, YH, TL and TAW are employees of Sanofi Pasteur, the study sponsor.

Figures

Figure 1. Percentage of virologically and serologically…
Figure 1. Percentage of virologically and serologically diagnosed dengue cases amongst participants who had at least one acute febrile episode during the study.
Laboratory-confirmed dengue: NS1 antigen positive; Probable dengue: IgM positive and/or fourfold rise in IgG.
Figure 2. Frequency of most commonly detected…
Figure 2. Frequency of most commonly detected non-dengue infections in febrile participants.
Data are the percentage of participants who had at least one acute febrile episode during the study, for whom IgM antibodies to these pre-specified infections were detected in acute or convalescent sera.

References

    1. Suttinont C, Losuwanaluk K, Niwatayakul K, Hoontrakul S, Intaranongpai W, et al. (2006) Causes of acute, undifferentiated, febrile illness in rural Thailand: results of a prospective observational study. Ann Trop Med Parasitol 100: 363–370.
    1. Punjabi NH, Taylor WR, Murphy GS, Purwaningsih S, Picarima H, et al. (2012) Etiology of acute, non-malaria, febrile illnesses in Jayapura, northeastern Papua, Indonesia. Am J Trop Med Hyg 86: 46–51.
    1. Ochiai RL, Acosta CJ, Danovaro-Holliday MC, Baiqing D, Bhattacharya SK, et al. (2008) A study of typhoid fever in five Asian countries: disease burden and implications for controls. Bull World Health Organ 86: 260–268.
    1. Phuong HL, de Vries PJ, Nga TT, Giao PT, Hung le Q, et al. (2006) Dengue as a cause of acute undifferentiated fever in Vietnam. BMC Infect Dis 6: 123.
    1. Sabchareon A, Sirivichayakul C, Limkittikul K, Chanthavanich P, Suvannadabba S, et al. (2012) Dengue infection in children in Ratchaburi, Thailand: a cohort study. I. Epidemiology of symptomatic acute dengue infection in children, 2006–2009. PLoS Negl Trop Dis 6: e1732.
    1. Simmerman JM, Uyeki TM (2008) The burden of influenza in East and South-East Asia: a review of the English language literature. Influenza Other Respi Viruses 2: 81–92.
    1. Thai KT, Phuong HL, Thanh Nga TT, Giao PT, Hung le Q, et al. (2010) Clinical, epidemiological and virological features of Dengue virus infections in Vietnamese patients presenting to primary care facilities with acute undifferentiated fever. J Infect 60: 229–237.
    1. Thavara U, Tawatsin A, Pengsakul T, Bhakdeenuan P, Chanama S, et al. (2009) Outbreak of chikungunya fever in Thailand and virus detection in field population of vector mosquitoes, Aedes aegypti (L.) and Aedes albopictus Skuse (Diptera: Culicidae). Southeast Asian J Trop Med Public Health 40: 951–962.
    1. Malavige GN, Fernando S, Fernando DJ, Seneviratne SL (2004) Dengue viral infections. Postgrad Med J 80: 588–601.
    1. Whitehorn J, Simmons CP (2011) The pathogenesis of dengue. Vaccine 29: 7221–7228.
    1. World Health Organization (2012) Accelerating work to overcome the global impact of neglected tropical diseases – A roadmap for implementation. WHO/HTM/NTD/2012.1. Available: Accessed 10 September 2012.
    1. WHO/WPRO/SEARO meeting on DengueNet implementation in South-east Asia and the Western Pacific, Kuala Lumpur, 11–13 December 2004. Wkly Epidemiol Rec 79: 57–62.
    1. World Health Organization (2011) Dengue/DHF: Comprehensive Guidelines for Prevention and Control of Dengue and Dengue Haemorrhagic Fever - Revised and expanded edition. Available: . Accessed 27 August 2012.
    1. Coller BA, Clements DE (2011) Dengue vaccines: progress and challenges. Curr Opin Immunol 23: 391–398.
    1. Guy B, Saville M, Lang J (2010) Development of Sanofi Pasteur tetravalent dengue vaccine. Hum Vaccin 6 [epub ahead of print].
    1. Setiati TE, Mairuhu AT, Koraka P, Supriatna M, Mac Gillavry MR, et al. (2007) Dengue disease severity in Indonesian children: an evaluation of the World Health Organization classification system. BMC Infect Dis 7: 22.
    1. Wichmann O, Yoon IK, Vong S, Limkittikul K, Gibbons RV, et al. (2011) Dengue in Thailand and Cambodia: an assessment of the degree of underrecognized disease burden based on reported cases. PLoS Negl Trop Dis 5: e996.
    1. Dussart P, Baril L, Petit L, Beniguel L, Quang LC, et al. (2012) Clinical and virological study of dengue cases and the members of their households: the multinational DENFRAME Project. PLoS Negl Trop Dis 6: e1482.
    1. Shepard DS, Lees R, Ng CW, Undurraga EA, Halasa Y, et al.. (2012) Burden of Dengue in Malaysia. Report from a Collaboration between Universities and the Ministry of Health of Malaysia. Available: . Accessed 10 September 2012.
    1. Guy B, Barrere B, Malinowski C, Saville M, Teyssou R, et al. (2011) From research to phase III: preclinical, industrial and clinical development of the Sanofi Pasteur tetravalent dengue vaccine. Vaccine 29: 7229–7241.
    1. World Health Organization (1997) Dengue haemorrhagic fever: Diagnosis, treatment, prevention and control. Geneva. Available: . Accessed 3 September 2012.
    1. Newcombe RG (1998) Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med 17: 857–872.
    1. Rothman KJ, Greenland S (1998) Modern epidemiology. New York, NY: Lippincott-Raven.
    1. Anderson KB, Chunsuttiwat S, Nisalak A, Mammen MP, Libraty DH, et al. (2007) Burden of symptomatic dengue infection in children at primary school in Thailand: a prospective study. Lancet 369: 1452–1459.
    1. Tien NT, Luxemburger C, Toan NT, Pollissard-Gadroy L, Huong VT, et al. (2010) A prospective cohort study of dengue infection in schoolchildren in Long Xuyen, Viet Nam. Trans R Soc Trop Med Hyg 104: 592–600.
    1. Capeding RZ, Brion JD, Caponpon MM, Gibbons RV, Jarman RG, et al. (2010) The incidence, characteristics, and presentation of dengue virus infections during infancy. Am J Trop Med Hyg 82: 330–336.
    1. Lapphra K, Sangcharaswichai A, Chokephaibulkit K, Tiengrim S, Piriyakarnsakul W, et al. (2008) Evaluation of an NS1 antigen detection for diagnosis of acute dengue infection in patients with acute febrile illness. Diagn Microbiol Infect Dis 60: 387–391.
    1. Chau TN, Anders KL, Lien le B, Hung NT, Hieu LT, et al. (2010) Clinical and virological features of Dengue in Vietnamese infants. PLoS Negl Trop Dis 4: e657.
    1. Innis BL, Nisalak A, Nimmannitya S, Kusalerdchariya S, Chongswasdi V, et al. (1989) An enzyme-linked immunosorbent assay to characterize dengue infections where dengue and Japanese encephalitis co-circulate. Am J Trop Med Hyg 40: 418–427.
    1. Schilling S, Ludolfs D, Van An L, Schmitz H (2004) Laboratory diagnosis of primary and secondary dengue infection. J Clin Virol 31: 179–184.
    1. Vu TT, Holmes EC, Duong V, Nguyen TQ, Tran TH, et al. (2010) Emergence of the Asian 1 genotype of dengue virus serotype 2 in Viet Nam: in vivo fitness advantage and lineage replacement in South-East Asia. PLoS Negl Trop Dis 4: e757.
    1. Ray P, Ratagiri VH, Kabra SK, Lodha R, Sharma S, et al. (2012) Chikungunya infection in India: results of a prospective hospital based multi-centric study. PLoS One 7: e30025.
    1. Chem YK, Zainah S, Berendam SJ, Rogayah TA, Khairul AH, et al. (2010) Molecular epidemiology of chikungunya virus in Malaysia since its first emergence in 1998. Med J Malaysia 65: 31–35.
    1. Bhatia R, Narain JP (2009) Re-emerging chikungunya fever: some lessons from Asia. Trop Med Int Health 14: 940–946.
    1. Laoprasopwattana K, Kaewjungwad L, Jarumanokul R, Geater A (2012) Differential diagnosis of Chikungunya, dengue viral infection and other acute febrile illnesses in children. Pediatr Infect Dis J 31: 459–463.
    1. Cao MT, Vu TQH, Hoang TND, Phan TKL (2011) [Surveillance of chikungunya virus existence in Southern Vietnam in 2010]. Journal of Preventive Medicine XXI: 161–166.
    1. Wu D, Wu J, Zhang Q, Zhong H, Ke C, et al. (2012) Chikungunya Outbreak in Guangdong Province, China, 2010. Emerging Infectious Diseases 18: 493–495.
    1. Duong V, Andries AC, Ngan C, Sok T, Richner B, et al. (2012) Reemergence of Chikungunya virus in Cambodia. Emerg Infect Dis 18: 2066–2069.
    1. Ditsuwan T, Liabsuetrakul T, Chongsuvivatwong V, Thammapalo S, McNeil E (2011) Assessing the spreading patterns of dengue infection and chikungunya fever outbreaks in lower southern Thailand using a geographic information system. Ann Epidemiol 21: 253–261.
    1. Laras K, Sukri NC, Larasati RP, Bangs MJ, Kosim R, et al. (2005) Tracking the re-emergence of epidemic chikungunya virus in Indonesia. Trans R Soc Trop Med Hyg 99: 128–141.
    1. Parry CM, Wijedoru L, Arjyal A, Baker S (2011) The utility of diagnostic tests for enteric fever in endemic locations. Expert Rev Anti Infect Ther 9: 711–725.
    1. Keddy KH, Sooka A, Letsoalo ME, Hoyland G, Chaignat CL, et al. (2011) Sensitivity and specificity of typhoid fever rapid antibody tests for laboratory diagnosis at two sub-Saharan African sites. Bull World Health Organ 89: 640–647.
    1. Baker S, Favorov M, Dougan G (2010) Searching for the elusive typhoid diagnostic. BMC Infect Dis 10: 45.
    1. Crump JA, Luby SP, Mintz ED (2004) The global burden of typhoid fever. Bull World Health Organ 82: 346–353.

Source: PubMed

3
Abonnere