Monthly Intramuscular Neridronate for the Treatment of Postmenopausal Osteoporosis: Results of a 6-Year Prospective Italian Study

L Guiducci, C Vassalle, P Parchi, S Maffei, L Guiducci, C Vassalle, P Parchi, S Maffei

Abstract

Purpose: Oral bisphosphonates (BPs) are the most commonly used medications for osteoporosis (OP), but their poor gastrointestinal (GI) absorption and tolerance hamper compliance. Intramuscular (IM) neridronate (NE), an amino-BP, is an easy-to-administer, effective, and safe alternative to oral BPs. We assessed the 6-year effects of monthly IM NE on bone mineral density (BMD) and bone turnover biomarkers (BMs) in postmenopausal OP.

Methods: This single-center, prospective study enrolled postmenopausal osteoporotic outpatients with gastric intolerance to BPs (based on Tuscany Region's law GRT n. 836 20/10/2008). They received 25 mg IM NE once a month (with vitamin D and calcium if necessary) for 6 years. BMD was evaluated at lumbar spine (L1-L4), femoral neck (FN), and total femur (TF) at baseline (BL) and every 12 months afterwards. At BL, month 3, and every 12 months after BL, total and ionized calcium, vitamin D, parathyroid hormone 1-84, bone alkaline phosphatase (BALP), osteocalcin, and N- and C-terminal telopeptides were assayed.

Results: Overall, 60 women (mean age: 62.3 ± 7.5 years) received monthly IM NE for 6 years, with vitamin D and calcium supplementation in 81.3% of cases. Compared to BL, BMD increased significantly already after 1 year at all sites (4.5 ± 0.9% for L1-L4, 4.5 ± 0.8% for TF, and 2.1 ± 0.6% for FN, P ≤ 0.05), and the changes were maintained over time, whereas FN further improved up to year 3 and remained stable afterwards (P ≤ 0.05). All BMs, except for total calcium and BALP, progressively decreased over time (P ≤ 0.05). No fractures and significant adverse events were reported.

Conclusion: The monthly administration of IM NE represents a manageable and effective option, in terms of BMD and bone BM improvement, for the long-term treatment of postmenopausal OP women with gastric intolerance to BPs. This trial is registered with ClinicalTrials.gov Identifier: NCT03699150.

Figures

Figure 1
Figure 1
Patient distribution by the levels of circulating vitamin D (25-OH-D) as determined during the study period.
Figure 2
Figure 2
Mean change from baseline of BMD at L1-L4 (a), TF (b), and FN (c) over time. Data are presented as mean ± standard deviation. ∗P ≤ 0.05 vs baseline. Abbreviations: BMD: bone mineral density; L1-L4: lumbar spine; TF: total femur; FN: femoral neck.
Figure 3
Figure 3
Levels of 25-OH-D (a), PTH (b), i-Ca (c), and t-Ca (d) over time. Data are presented as mean ± standard deviation. Histograms in panels (b-d) indicate the mean change from baseline (%) of each biomarker. ∗P ≤ 0.05 vs baseline, •P ≤ 0.001 vs baseline. Abbreviations: 25-OH-D: vitamin D; PTH: parathyroid hormone; i-Ca: ionized calcium; t-Ca: total calcium.
Figure 4
Figure 4
Levels of bone biomarkers over time: CTX (a), NTX (b), OC (c), and BAP (d). Data are presented as mean ± standard deviation. Histograms indicate the mean change from baseline (%) of each biomarker. ∗P ≤ 0.05 vs baseline, ○P ≤ 0.01 vs baseline, #P ≤ 0.0001 vs baseline, ▪P ≤ 0.05 vs 0.25 years. Abbreviations: CTX: C-terminal telopeptide; NTX: N-terminal telopeptide; OC: osteocalcin; BALP: bone alkaline phosphatase.

References

    1. Eastell R., O’Neill T. W., Hofbauer L. C., et al. Postmenopausal osteoporosis. Nature Reviews Disease Primers. 2016;2, article 16069 doi: 10.1038/nrdp.2016.69.
    1. Lello S., Sorge R., Surico N., OMERO Study Group Osteoporosis’s menopausal epidemiological risk observation (O.M.E.R.O.) study. Gynecological Endocrinology. 2015;31(12):992–998. doi: 10.3109/09513590.2015.1063605.
    1. Pike C., Birnbaum H. G., Schiller M., Sharma H., Burge R., Edgell E. T. Direct and indirect costs of non-vertebral fracture patients with osteoporosis in the US. PharmacoEconomics. 2010;28(5):395–409. doi: 10.2165/11531040-000000000-00000.
    1. Imaz I., Zegarra P., González-Enríquez J., Rubio B., Alcazar R., Amate J. M. Poor bisphosphonate adherence for treatment of osteoporosis increases fracture risk: systematic review and meta-analysis. Osteoporosis International. 2010;21(11):1943–1951. doi: 10.1007/s00198-009-1134-4.
    1. Rabenda V., Hiligsmann M., Reginster J.-Y. Poor adherence to oral bisphosphonate treatment and its consequences: a review of the evidence. Expert Opinion on Pharmacotherapy. 2009;10(14):2303–2315. doi: 10.1517/14656560903140533.
    1. Gatti D., Viapiana O., Idolazzi L., Fracassi E., Adami S. Neridronic acid for the treatment of bone metabolic diseases. Expert Opinion on Drug Metabolism & Toxicology. 2009;5(10):1305–1311. doi: 10.1517/17425250903029190.
    1. Braga V., Gatti D., Colapietro F., et al. Intravenous intermittent neridronate in the treatment of postmenopausal osteoporosis. Bone. 2003;33(3):342–345. doi: 10.1016/S8756-3282(03)00084-X.
    1. Cascella T., Musella T., Orio F., et al. Effects of neridronate treatment in elderly women with osteoporosis. Journal of Endocrinological Investigation. 2005;28(5):202–208. doi: 10.1007/BF03345373.
    1. Adami S., Gatti D., Bertoldo F., et al. Intramuscular neridronate in postmenopausal women with low bone mineral density. Calcified Tissue International. 2008;83(5):301–307. doi: 10.1007/s00223-008-9179-5.
    1. Rossi E., Giorni L. Direttive alle Aziende Sanitarie Toscane sull’impiego in reumatologia dei farmaci fuori dalle indicazioni di registrazione, ai sensi dell’art 1, comma 796, lettera Z della legge 296/2006. Delibera Regione Toscana 836_20/10/2008.
    1. Barrett-Connor E., Black D., Bonjour J.-P., et al. Prevention and management of osteoporosis. World Health Organization Technical Report Series. 2003;921:1–164. back cover.
    1. Garber J. R., Cobin R. H., Gharib H., et al. Clinical practice guidelines for hypothyroidism in adults: cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Thyroid. 2012;22(12):1200–1235. doi: 10.1089/thy.2012.0205.
    1. Paggiosi M. A., Peel N., McCloskey E., Walsh J. S., Eastell R. Comparison of the effects of three oral bisphosphonate therapies on the peripheral skeleton in postmenopausal osteoporosis: the TRIO study. Osteoporosis International. 2014;25(12):2729–2741. doi: 10.1007/s00198-014-2817-z.
    1. Eriksen E. F., Díez-Pérez A., Boonen S. Update on long-term treatment with bisphosphonates for postmenopausal osteoporosis: a systematic review. Bone. 2014;58:126–135. doi: 10.1016/j.bone.2013.09.023.
    1. Inderjeeth C. A., Glendenning P., Ratnagobal S., Inderjeeth D. C., Ondhia C. Long-term efficacy, safety, and patient acceptability of ibandronate in the treatment of postmenopausal osteoporosis. International Journal of Women's Health. 2014;17:7–17. doi: 10.2147/IJWH.S73944.
    1. Brown J. E., Cook R. J., Major P., et al. Bone turnover markers as predictors of skeletal complications in prostate cancer, lung cancer, and other solid tumors. Journal of the National Cancer Institute. 2005;97(1):59–69. doi: 10.1093/jnci/dji002.
    1. Corrado A., Cantatore F. P., Grano M., Colucci S. Neridronate and human osteoblasts in normal, osteoporotic and osteoarthritic subjects. Clinical Rheumatology. 2005;24(5):527–534. doi: 10.1007/s10067-005-1100-2.
    1. Naylor K. E., Jacques R. M., Paggiosi M., et al. Response of bone turnover markers to three oral bisphosphonate therapies in postmenopausal osteoporosis: the TRIO study. Osteoporosis International. 2016;27(1):21–31. doi: 10.1007/s00198-015-3145-7.
    1. Miller P. D., Epstein S., Sedarati F., Reginster J.-Y. Once-monthly oral ibandronate compared with weekly oral alendronate in postmenopausal osteoporosis: results from the head-to-head MOTION study. Current Medical Research and Opinion. 2008;24(1):207–213. doi: 10.1185/030079908X253889.
    1. Russell R. G. G., Watts N. B., Ebetino F. H., Rogers M. J. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporosis International. 2008;19(6):733–759. doi: 10.1007/s00198-007-0540-8.
    1. Bianchi S., Maffei S., Prontera C., Battaglia D., Vassalle C. Preanalytical, analytical (DiaSorin LIAISON) and clinical variables potentially affecting the 25-OH vitamin D estimation. Clinical Biochemistry. 2012;45(18):1652–1657. doi: 10.1016/j.clinbiochem.2012.08.003.
    1. Holick M. F., Binkley N. C., Bischoff-Ferrari H. A., et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. The Journal of Clinical Endocrinology & Metabolism. 2011;96(7):1911–1930. doi: 10.1210/jc.2011-0385.
    1. O’Connor K. M. Evaluation and treatment of osteoporosis. The Medical Clinics of North America. 2016;100(4):807–826. doi: 10.1016/j.mcna.2016.03.016.
    1. Carmel A. S., Shieh A., Bang H., Bockman R. S. The 25(OH)D level needed to maintain a favorable bisphosphonate response is ≥33 ng/ml. Osteoporosis International. 2012;23(10):2479–2487. doi: 10.1007/s00198-011-1868-7.
    1. von Hurst P. R., Stonehouse W., Kruger M. C., Coad J. Vitamin D supplementation suppresses age-induced bone turnover in older women who are vitamin D deficient. The Journal of Steroid Biochemistry and Molecular Biology. 2010;121(1-2):293–296. doi: 10.1016/j.jsbmb.2010.03.054.
    1. Kamel S., Brazier M., Rogez J. C., et al. Different responses of free and peptide-bound cross-links to vitamin D and calcium supplementation in elderly women with vitamin D insufficiency. The Journal of Clinical Endocrinology and Metabolism. 1996;81(10):3717–3721. doi: 10.1210/jcem.81.10.8855828.
    1. Blouin J., Dragomir A., Ste-Marie L.-G., Fernandes J. C., Perreault S. Discontinuation of antiresorptive therapies: a comparison between 1998-2001 and 2002-2004 among osteoporotic women. The Journal of Clinical Endocrinology and Metabolism. 2007;92(3):887–894. doi: 10.1210/jc.2006-1856.
    1. Modi A., Siris E. S., Tang J., Sen S. Cost and consequences of noncompliance with osteoporosis treatment among women initiating therapy. Current Medical Research and Opinion. 2015;31(4):757–765. doi: 10.1185/03007995.2015.1016605.
    1. Blouin J., Dragomir A., Moride Y., Ste-Marie L.-G., Fernandes J. C., Perreault S. Impact of noncompliance with alendronate and risedronate on the incidence of nonvertebral osteoporotic fractures in elderly women. British Journal of Clinical Pharmacology. 2008;66(1):117–127. doi: 10.1111/j.1365-2125.2008.03178.x.
    1. Siris E. S., Harris S. T., Rosen C. J., et al. Adherence to bisphosphonate therapy and fracture rates in osteoporotic women: relationship to vertebral and nonvertebral fractures from 2 US claims databases. Mayo Clinic Proceedings. 2006;81(8):1013–1022. doi: 10.4065/81.8.1013.
    1. Shane E., Burr D., Abrahamsen B., et al. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American Society for Bone and Mineral Research. Journal of Bone and Mineral Research. 2014;29(1):1–23. doi: 10.1002/jbmr.1998.
    1. Whitaker M., Guo J., Kehoe T., Benson G. Bisphosphonates for osteoporosis--where do we go from here? The New England Journal of Medicine. 2012;366(22):2048–2051. doi: 10.1056/NEJMp1202619.
    1. Klop C., Gibson-Smith D., Elders P. J. M., et al. Anti-osteoporosis drug prescribing after hip fracture in the UK: 2000-2010. Osteoporosis International. 2015;26(7):1919–1928. doi: 10.1007/s00198-015-3098-x.

Source: PubMed

3
Abonnere