Neuroenhancement and neuroprotection by oral solution citicoline in non-arteritic ischemic optic neuropathy as a model of neurodegeneration: A randomized pilot study

Vincenzo Parisi, Lucilla Barbano, Antonio Di Renzo, Gianluca Coppola, Lucia Ziccardi, Vincenzo Parisi, Lucilla Barbano, Antonio Di Renzo, Gianluca Coppola, Lucia Ziccardi

Abstract

Purpose: To evaluate whether treatment with Citicoline in oral solution (OS-Citicoline) would increase visual function, retinal ganglion cells (RGCs) function, and neural conduction along visual pathways (neuroenhancement), and/or induce preservation of RGCs fibers' loss (neuroprotection) in non-arteritic ischemic optic neuropathy (NAION), a human model of neurodegeneration.

Methods: Thirty-six patients with NAION and 20 age-matched controls were enrolled. Nineteen NAION patients received 500 mg/day of OS-Citicoline for a 6-month period followed by 3-month of wash-out (NC Group); 17 NAION patients were not treated (NN Group) from baseline to 9 months. In all subjects at baseline, and in NC and NN eyes at 6 and 9 months of follow-up, we assessed Visual Acuity (VA), Pattern Electroretinogram (PERG), Visual Evoked Potentials (VEP), retinal nerve fiber layer thickness (RNFL-T), and Humphrey 24-2 visual field mean deviation (HFA MD). Mean differences were statistically evaluated with ANOVA between Groups, and linear correlations were analysed with Pearson's test.

Results: At 6 months, significant differences between groups for all parameters were observed (ANOVA, p<0.01). In NC eyes, VA increased, PERG responses increased, VEP recordings improved and were significantly correlated with increases in HFA MD (p<0.01), and RNFL-T was unmodified or improved. In contrast, in NN eyes, VA, PERG, VEP responses, RNFL-T, and HFA MD were further worsened. Significant differences were still present at 9-month follow-up in the NN Group and after 3 months of OS-Citicoline wash-out in NC eyes.

Conclusions: OS-Citicoline treatment induced neuroenhancement (improvement in RGCs function and neural conduction along visual pathways related to improvement of visual field defects) and neuroprotection (unmodified or improved RNFL morphological condition) in a human model of NAION involving fast RGCs degeneration.

Trial registration: ClinicalTrials.gov NCT03758118.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. CONSORT participant flow diagram.
Fig 1. CONSORT participant flow diagram.
Fig 2. Examples of simultaneous Visual Evoked…
Fig 2. Examples of simultaneous Visual Evoked Potentials (VEP) and Pattern Electroretinogram (PERG) recordings, Humphrey Field Analyzer (HFA 24–2) and Retinal Nerve Fiber Layer Thickness (RNFL-T) by optical coherence tomography (OCT) from two patients with non-arteritic ischemic optic neuropathy (NAION).
Fig 3. Pattern and visual evoked potentials…
Fig 3. Pattern and visual evoked potentials (VEP) P100 implicit time recorded in response to 15’ checks (15’) results.
(A) Mean of absolute PERG P50-N95 Amplitude values observed in NC and NN Groups. * = ANOVA, p<0.01 in NN and NC Groups with respect to baseline. Vertical lines: one mean standard deviation. The statistical evaluation is reported in S2 Table. (B) Individual PERG P50-N95 Amplitude values observed in NC eyes at baseline plotted as a function of the values of the corresponding differences at the end of treatment (6 months minus baseline). Pearson’s test was used for regression analysis and linear correlation. (C) Mean of absolute VEP P100 implicit time values observed in NC and NN Groups. * = ANOVA, p<0.01 in NN and NC Groups with respect to baseline. Vertical lines: one mean standard deviation. Statistical evaluation is reported in “S2 Table”. (D) Individual VEP P100 implicit time values observed in NC eyes at baseline plotted as a function of the values of the corresponding differences at the end of treatment (6 months minus baseline). Pearson’s test was used for regression analysis and linear correlation.
Fig 4. Retinal Nerve Fiber Layer Thickness…
Fig 4. Retinal Nerve Fiber Layer Thickness average from all quadrants (RNFL-T Overall) results.
(A) Individual changes detected in patients with Non-Arteritic Ischemic Optic Neuropathy (NAION) treated with Citicoline in oral solution (NC Group, N = 19 eyes) and in untreated NAION patients (NN Group, N = 17 eyes). The percentage of unmodified eyes (within the 95% confidence test-retest limit), eyes with improvement (values over the 95% confidence test-retest limit, dashed line), and eyes with worsening (values under the 95% confidence test-retest limit, solid line) are reported in “S1 Table”. (B) Mean of individual differences observed in NC and NN Groups. * = ANOVA, p<0.01 between NN and NC Groups. Vertical lines: one mean standard deviation. Statistical evaluation is reported in Table 2. (C) Mean of absolute values observed in NC and NN Groups. * = ANOVA, p<0.01 in NN and NC Groups with respect to baseline. Vertical lines: one mean standard deviation. The statistical evaluation is reported in “S3 Table”. (D) Individual values observed in NC eyes at baseline condition plotted as a function of the values of the corresponding differences at the end of treatment (6 months minus baseline). Pearson’s test was used for regression analysis and linear correlation.

References

    1. Carelli V, La Morgia C, Ross-Cisneros FN, Sadun AA. Optic neuropathies: the tip of the neurodegeneration iceberg. Hum Mol Genet. 2017; 1;26(R2):R139–R150. 10.1093/hmg/ddx273
    1. Wax MB, Tezel G. Neurobiology of glaucomatous optic neuropathy: diverse cellular events in neurodegeneration and neuroprotection. Mol Neurobiol. 2002; 26(1):45–55. 10.1385/MN:26:1:045
    1. Fayaz SM, Suvanish Kumar VS, Rajanikant GK. Necroptosis: who knew there were so many interesting ways to die? CNS Neurol Disord Drug Targets. 2014; 13(1): 42–51.
    1. Cho YS. The role of necroptosis in the treatment of diseases. BMB Rep. 2018; 51(5):219–224. 10.5483/BMBRep.2018.51.5.074
    1. Calkins DJ, Horner PJ. The cell and molecular biology of glaucoma: axonopathy and the brain. Invest Ophthalmol Vis Sci. 2012; 53(5): 2482–2484. 10.1167/iovs.12-9483i
    1. Munguba GC, Galeb S, Liu Y, Landy DC, Lam D, Camp A, et al. Nerve fiber layer thinning lags retinal ganglion cell density following crush axonopathy. Invest Ophthalmol Vis Sci. 2014; 55(10): 6505–6513. 10.1167/iovs.14-14525
    1. Yu JG, Feng YF, Xiang Y, Huang JH, Savini G, Parisi V, et al. Retinal nerve fiber layer thickness changes in Parkinson disease: a meta-analysis. PLoS One. 2014; 9(1): e85718 10.1371/journal.pone.0085718
    1. Coppola G, Di Renzo A, Ziccardi L, Martelli F, Fadda A, Manni G, et al. Optical Coherence Tomography in Alzheimer's Disease: A Meta-Analysis. PLoS One. 2015; 10(8): e0134750 10.1371/journal.pone.0134750
    1. Hayreh SS, Zimmerman B. Visual field abnormalities in non-arteritic anterior ischemic optic neuropathy: their pattern and prevalence at initial examination. Arch Ophthalmol. 2005; 123(11): 1554–1562. 10.1001/archopht.123.11.1554
    1. Patel HR, Margo CE. Pathology of Ischemic Optic Neuropathy. Arch Pathol Lab Med. 2017; 141(1): 162–166. 10.5858/arpa.2016-0027-RS
    1. Parisi V, Gallinaro G, Ziccardi L, Coppola G. Electrophysiological assessment of visual function in patients with non-arteritic ischaemic optic neuropathy. Eur J Neurol. 2008; 15(8): 839–845. 10.1111/j.1468-1331.2008.02200.x
    1. Sun MH, Liao YJ. Structure-Function Analysis of Nonarteritic Anterior Ischemic Optic Neuropathy and Age-Related Differences in Outcome. J Neuroophthalmol. 2017; 37(3): 258–264. 10.1097/WNO.0000000000000521
    1. Wright Mayes E, Cole ED, Dang S, Novais EA, Vuong L, Mendoza-Santiesteban C, et al. Optical coherence tomography angiography in nonarteritic anterior ischemic optic neuropathy. J Neuroophthalmol. 2017. 37(4): 358–364. 10.1097/WNO.0000000000000493
    1. Balducci N, Morara M, Veronese C, Barboni P, Casadei NL, Savini G, et al. Optical coherence tomography angiography in acute arteritic and non-arteritic anterior ischemic optic neuropathy. Graefes Arch Clin Exp Ophthalmol. 2017; 255(11): 2255–2261. 10.1007/s00417-017-3774-y
    1. Contreras I, Noval S, Rebolleda G, Muñoz-Negrete FJ. Follow-up of nonarteritic anterior ischemic optic neuropathy with optical coherence tomography. Ophthalmology. 2007; 114 (12): 2338–2344. 10.1016/j.ophtha.2007.05.042
    1. Huang-Link YM, Al-Hawasi A, Lindehammar H. Acute optic neuritis: retinal ganglion cell loss precedes retinal nerve fiber thinning. Neurol Sci. 2015; 36(4): 617–620. 10.1007/s10072-014-1982-3
    1. Khalilpour S, Latifi S, Behnammanesh G, Majid AMSA, Majid ASA, Tamayol A. Ischemic optic neuropathy as a model of neurodegenerative disorder: A review of pathogenic mechanism of axonal degeneration and the role of neuroprotection. J Neurol Sci. 2017; 375: 430–441. 10.1016/j.jns.2016.12.044
    1. Levin LA. Neuroprotection and regeneration in glaucoma. Ophthalmol Clin North Am. 2005; 18(4): 585–596. 10.1016/j.ohc.2005.07.001
    1. Chang EE, Goldberg JL. Glaucoma 2.0: neuroprotection, neuroregeneration, neuroenhancement. Ophthalmology.2012; 119(5): 979–986. 10.1016/j.ophtha.2011.11.003
    1. Casson RJ, Chidlow G, Ebneter A, Wood JP, Crowston J, Goldberg I. Translational neuroprotection research in glaucoma: a review of definitions and principles. Clin Exp Ophthalmol. 2012; 40(4): 350–357. 10.1111/j.1442-9071.2011.02563.x
    1. Ghaffarieh A, Levin LA. Optic nerve disease and axon pathophysiology. Int Rev Neurobiol. 2012; 105: 1–17. 10.1016/B978-0-12-398309-1.00002-0
    1. Rasminsky M. Regeneration of functional synaptic connections between widely separated neurons in the adult mammalian central nervous system. J Physiol (Paris). 1991; 85(3): 171–178.
    1. Aguayo AJ, Rasminsky M, Bray GM, Carbonetto S, McKerracher L, Villegas-Pérez MP, et al. Degenerative and regenerative responses of injured neurons in the central nervous system of adult mammals. Philos Trans R Soc Lond B Biol Sci. 1991; 331(1261): 337–343. 10.1098/rstb.1991.0025
    1. Corredor RG, Goldberg JL. Electrical activity enhances neuronal survival and regeneration. J Neural Eng. 2009; 6(5): 055001 10.1088/1741-2560/6/5/055001
    1. Beisse F, Diem R. Immunomodulation and neuroprotection in optic neuritis. Ophthalmologe. 2016; 113(5): 398–401. 10.1007/s00347-016-0264-2
    1. Burton JM, Eliasziw M, Trufyn J, Tung C, Carter G, Costello F. A prospective cohort study of vitamin D in optic neuritis recovery. Mult Scler. 2017; 23(1): 82–93. 10.1177/1352458516642315
    1. Morrow SA, Fraser JA, Day C, Bowman D, Rosehart H, Kremenchutzky M et al. Effect of treating acute optic neuritis with bioequivalent oral vs intravenous corticosteroids: a randomized clinical trial: JAMA Neurol. 2018; 75(6): 690–696. 10.1001/jamaneurol.2018.0024
    1. Mashin VV, Belova LA, Dudikov EM, Bergelson TM, Lankov VA, Zakuraeva KA. The efficacy of recognan in the early stage of ischemic stroke. Zh Nevrol Psikhiatr Im S S Korsakova. 2017; 117(10): 44–48. 10.17116/jnevro201711710144-48
    1. Secades JJ. Citicoline: pharmacological and clinical review, 2016 update. Rev Neurol. 2016; 63(S03):S1–S73.
    1. Sergeev DV, Domashenko MA , Piradov MA. Pharmacological neuroprotection in stroke in clinical practice: new perspectives. Zh Nevrol Psikhiatr Im S S Korsakova. 2017; 117(4): 86–91. 10.17116/jnevro20171174186-91
    1. Agarwal S, Patel BM. Is aura around citicoline fading? A systemic review. Indian J Pharmacol. 2017; 49(1): 4–9. 10.4103/0253-7613.201037
    1. Cubells JM, Hernando C. Clinical trial on the use of cytidine diphosphate choline in Parkinson's disease. Clin Ther. 1988; 10(6): 664–671.
    1. García-Mas A, Rossiñol A, Roca M, Lozano R, Rosselló J, Llinas J. Effects of citicholine in subcortical dementia associated with Parkinson's disease assessed by quantified electroencephalography. Clin Ther. 1992; 14(5): 718–729.
    1. Cacabelos R, Caamaño J, Gómez MJ, Fernández-Novoa L, Franco-Maside A, Alvarez XA. Therapeutic effects of CDP-choline in Alzheimer's disease. Cognition, brain mapping, cerebrovascular hemodynamics, and immune factors. Ann N Y Acad Sci. 1996; 777: 399–403. 10.1111/j.1749-6632.1996.tb34452.x
    1. Alvarez XA, Mouzo R, Pichel V, Pérez P, Laredo M, Fernández-Novoa L, et al. Double-blind placebo-controlled study with citicoline in APOE genotyped Alzheimer's disease patients. Effects on cognitive performance, brain bioelectrical activity and cerebral perfusion. Methods Find Exp Clin Pharmacol. 1999; 21(9): 633–644.
    1. Parisi V, Manni G, Colacino G, Bucci MG. Cytidine-5'-diphosphocholine (citicoline) improves retinal and cortical responses in patients with glaucoma. Ophthalmology. 1999; 106(6): 1126–1134. 10.1016/S0161-6420(99)90269-5
    1. Parisi V. Electrophysiological assessment of glaucomatous visual dysfunction during treatment with Cytidine-5'-diphosphocholine (citicoline): a study of 8 years of follow-up. Doc Ophthalmol. 2005; 110(1): 91–102. 10.1007/s10633-005-7348-7
    1. Parisi V, Coppola G, Centofanti M, Oddone F, Angrisani AM, Ziccardi L, et al. Evidence of the neuroprotective role of citicoline in glaucoma patients. Prog Brain Res. 2008; 173: 541–554. 10.1016/S0079-6123(08)01137-0
    1. Parisi V, Centofanti M, Ziccardi L, Tanga L, Michelessi M, Roberti G, et al. Treatment with citicoline eye drops enhances retinal function and neural conduction along the visual pathways in open angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 2015; 253(8): 1327–1340. 10.1007/s00417-015-3044-9
    1. Roberti G, Tanga L, Parisi V, Sampalmieri M, Centofanti M, Manni G. A preliminary study of the neuroprotective role of citicoline eye drops in glaucomatous optic neuropathy. Indian J Ophthalmol. 2014; 62(5): 549–553. 10.4103/0301-4738.133484
    1. Parisi V, Coppola G, Ziccardi L, Gallinaro G, Falsini B. Cytidine-5′ -diphosphocholine (citicoline): a pilot study in patients with nonarteritic ischaemic optic neuropathy. Eur J Neurol. 2008; 15(5): 465–474. 10.1111/j.1468-1331.2008.02099.x
    1. Osborne NN, Chidlow G, Layton CJ, Wood JP, Casson RJ, Melena J. Optic nerve and neuroprotection strategies. Eye (Lond). 2004; 18(11): 1075–1084. 10.1038/sj.eye.6701588
    1. Park CH, Kim YS, Noh HS, Cheon EW, Yang YA, Yoo JM, et al. Neuroprotective effect of citicoline against KA-induced neurotoxicity in the rat retina. Exp Eye Res. 2005; 81(3): 350–358. 10.1016/j.exer.2005.02.007
    1. Schuettauf F, Rejdak R, Thaler S, Bolz S, Lehaci C, Mankowska A, et al. Citicoline and lithium rescue retinal ganglion cells following partial optic nerve crush in the rat. Exp Eye Res. 2006; 83(5): 1128–1134. 10.1016/j.exer.2006.05.021
    1. Parisi V, Oddone F, Ziccardi L, Roberti G, Coppola G, Manni G. Citicoline and Retinal Ganglion Cells: Effects on Morphology and Function. Curr Neuropharmacol. 2018; 16(7): 919–932. 10.2174/1570159X15666170703111729
    1. Solovyeva EY, Karneev AN, Chekanov AV, Baranova OA, Shchelkonogov VA, Sinebryukhova AM, et al. The study of the membrane-protective potential of the combination of 2-ethyl-6-methyl-3-hydroxypyridine-succinate and citicoline. Zh Nevrol Psikhiatr Im S S Korsakova. 2018; 118(1): 18–22. 10.17116/jnevro20181181118-22
    1. Masson G, Mestre D, Blin O. Dopaminergic modulation of visual sensitivity in man. Fundam Clin Pharmacol. 1993; 7(8): 449–463. 10.1111/j.1472-8206.1993.tb01041.x
    1. Rejdak R, Toczołowski J, Solski J, Duma D, Grieb P. Citicoline treatment increases retinal dopamine content in rabbits. Ophthalmic Res. 2002; 34(3): 146–149. 10.1159/000063658
    1. Witkovsky P. Dopamine and retinal function. Doc Ophthalmol. 2004; 108(1): 17–40.
    1. Sakamoto K, Liu C, Kasamatsu M, Pozdeyev NV, Iuvone PM, Tosini G. Dopamine regulates melanopsin mRNA expression in intrinsically photosensitive retinal ganglion cells. Eur J Neurosci. 2005; 22(12): 3129–3136. 10.1111/j.1460-9568.2005.04512.x
    1. Roda A, Fini A, Grigolo B, Scapini G. Routes of administration and serum levels of [Methyl-14C]-Cytidine-Diphosphocholine. Curr Ther Res. 1983; 34: 1049–1053.
    1. Agut J, Font E, Sacristán A, Ortiz JA. Bioavailability of methyl-14C CDP-choline by oral route. Arzneimittelforschung. 1983; 33(7A): 1045–1047.
    1. Ottobelli L, Manni GL, Centofanti M, Iester M, Allevena F, Rossetti L. Citicoline oral solution in glaucoma: is there a role in slowing disease progression?. Ophthalmologica. 2013; 229(4): 219–226. 10.1159/000350496
    1. Hayreh SS, Jonas JB. Optic disc morphology after arteritic anterior ischemic optic neuropathy. Ophthalmology. 2001; 108(9): 1586–1594. 10.1016/S0161-6420(01)00649-2
    1. Mathews MK. Nonarteritic anterior ischemic optic neuropathy. Curr Opin Ophthalmol. 2005; 16(6): 341–345. 10.1097/01.icu.0000188361.52166.93
    1. Wilhelm B, Lüdtke H, Wilhelm H. Efficacy and tolerability of 0.2% brimonidine tartrate for the treatment of acute non-arteritic anterior ischemic optic neuropathy (NAION): a 3-month, double-masked, randomised, placebo-controlled trial. Graefes Arch Clin Exp Ophthalmol. 2006; 244(5): 551–558. 10.1007/s00417-005-0102-8
    1. Parisi V, Centofanti M, Gandolfi S, Marangoni D, Rossetti L, Tanga L, et al. Effects of coenzyme Q10 in conjunction with vitamin E on retinal-evoked and cortical-evoked responses in patients with open-angle glaucoma. J Glaucoma. 2014;23(6): 391–404. 10.1097/IJG.0b013e318279b836
    1. Celesia GG, Kaufman D. Pattern ERGs and visual evoked potentials in maculopathies and optic nerve diseases. Invest Ophthalmol Vis Sci. 1985; 26(5): 726–735.
    1. Froehlich JE, Kaufman DI. Effect of decreased retinal illumination on simultaneously recorded pattern electroretinograms and visual evoked potentials. Invest Ophthalmol Vis Sci. 1991; 32(2): 310–318.
    1. Parisi V, Centofanti M, Gandolfi S, Marangoni D, Rossetti L, Tanga L, et al. Effects of Coenzyme Q10 in conjunction with vitamin E on retinal-evoked and cortical-evoked responses in patients with open-angle glaucoma. J Glaucoma. 2014; 23(6): 391–404. 10.1097/IJG.0b013e318279b836
    1. Parisi V, Scarale ME, Balducci N, Fresina M, Campos EC. Electrophysiological detection of delayed post-retinal neural conduction in human amblyopia. Invest Ophthalmol Vis Sci. 2010; 51(10): 5041–5048. 10.1167/iovs.10-5412
    1. Odom JV, Bach M, Brigell M, Holder GE, McCulloch DLL, Mizota A et al. ISCEV standard for clinical visual evoked potentials–(2016 update). Doc Ophthalmol. 2016; 133(1): 1–9. 10.1007/s10633-016-9553-y
    1. Harter MR, White CT. Evoked cortical responses to checkerboard patterns: effect of check-size as a function of visual acuity. Electroencephalogr Clin Neurophysiol. 1970; 28(1): 48–54.
    1. Celesia GG. Evoked potential techniques in the evaluation of visual function. J Clin Neurophysiolol. 1984; 1(1): 55–76.
    1. Tilanus MA, Cuypers MH, Bemelmans NA, Pinckers AJ, Deutman AF. Predictive value of pattern VEP, pattern ERG and hole size in macular hole surgery. Graefes Arch Clin Exp Ophthalmol. 1999; 237(8): 629–635.
    1. Ziccardi L, Sadun F, De Negri AM, Barboni P, Savini G, Borrelli E, et al. Retinal function and neural conduction along the visual pathways in affected and unaffected carriers with Leber's hereditary optic neuropathy. Invest Ophthalmol Vis Sci. 2013; 54(10): 6893–6901. 10.1167/iovs.13-12894
    1. Ziccardi L, Parisi V, Giannini D, Sadun F, De Negri AM, Barboni P, et al. Multifocal VEP provide electrophysiological evidence of predominant dysfunction of the optic nerve fibers derived from the central retina in Leber's hereditary optic neuropathy. Graefes Arch Clin Exp Ophthalmol. 2015; 253(9): 1591–1600. 10.1007/s00417-015-2979-1
    1. Bach M, Brigell MG, Hawlina M, Holder GE, Johnson MA, McCulloch DL, et al. ISCEV standard for clinical pattern electroretinography (PERG). Doc Ophthalmol. 2013; 126(1): 1–7. 10.1007/s10633-012-9353-y
    1. Varga M. Visual evoked potentials and ultrasonography in ischemic optic neuropathy. Oftalmologia. 2002; 53(2): 41–45.
    1. Bernstein SL, Guo Y, Kelman SE, Flower RW, Johnson MA. Functional and cellular responses in a novel rodent model of anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci. 2003; 44(10): 4153–4162. 10.1167/iovs.03-0274
    1. Fioravanti M, Yanagi M. Cytidinediphosphocholine (CDPcholine) for cognitive and behavioural disturbances associated with chronic cerebral disorders in the elderly. Cochrane Database Syst Rev. 2005;(2): CD000269 10.1002/14651858.CD000269.pub3
    1. Porciatti V, Schiavi C, Benedetti P, Baldi A, Campos EC. Cytidine-5'-diphosphocholine improves visual acuity, contrast sensitivity and visually-evoked potentials of amblyopic subjects. Curr Eye Res. 1998; 17(2): 141–148.
    1. Fresina M, Dickmann A, Salerni A, De Gregorio F, Campos EC. Effect of oral CDP-choline on visual function in young amblyopic patients. Graefes Arch Clin Exp Ophthalmol. 2008; 246(1): 143–150. 10.1007/s00417-007-0621-6
    1. Eberhardt R, Birbamer G, Gerstenbrand F, Rainer E, Traegner H. Citicoline in the treatment of Parkinson's disease. Clin Ther. 1990; 12(6): 489–495.
    1. Martynov MY, Gusev EI. Current knowledge on the neuroprotective and neuroregenerative properties of citicoline in acute ischemic stroke. J Exp Pharmacol. 2015; 7:17–28. 10.2147/JEP.S63544
    1. Secades JJ. Probably role of citicoline in stroke rehabilitation: review of the literature. Rev Neurol. 2012; 54(3): 173–179.
    1. Tayebati SK, Amenta F. Choline-containing phospholipids: relevance to brain functional pathways. Clin Chem Lab Med. 2013;51(3): 513–521. 10.1515/cclm-2012-0559
    1. Bellusci C, Savini G, Carbonelli M, Carelli V, Sadun AA, Barboni P. Retinal nerve fiber layer thickness in nonarteritic anterior ischemic optic neuropathy: OCT characterization of the acute and resolving phases. Graefes Arch Clin Exp Ophthalmol. 2008; 246(5): 641–647. 10.1007/s00417-008-0767-x
    1. Akbari M, Abdi P, Fard MA, Afzali M, Ameri A, Yazdani-Abyaneh A, et al. Retinal Ganglion Cell Loss Precedes Retinal Nerve Fiber Thinning in Nonarteritic Anterior Ischemic Optic Neuropathy. J Neuroophthalmol. 2016; 36(2): 141–146. 10.1097/WNO.0000000000000345
    1. Kupersmith MJ, Garvin MK, Wang JK, Durbin M, Kardon R. Retinal ganglion cell layer thinning within one month of presentation for non-arteritic anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci. 2016; 57(8): 3588–3593. 10.1167/iovs.15-18736
    1. Dotan G, Goldstein M, Kesler A, Skarf B. Long-term retinal nerve fiber layer changes following nonarteritic anterior ischemic optic neuropathy. Clin Ophthalmol. 2013; 7: 735–740. 10.2147/OPTH.S42522
    1. Han M, Zhao C, Han QH, Xie S, Li Y. Change of Retinal Nerve Layer Thickness in Non-Arteritic Anterior Ischemic Optic Neuropathy Revealed by Fourier Domain Optical Coherence Tomography. Curr Eye Res. 2016; 41(8): 1076–1081. 10.3109/02713683.2015.1084640
    1. Matteucci A, Varano M, Gaddini L, Mallozzi C, Villa M, Pricci F et al. Neuroprotective effects of citicoline in in vitro models of retinal neurodegeneration. Int J Mol Sci. 2014; 15(4): 6286–6297. 10.3390/ijms15046286
    1. Maestroni S, Preziosa C, Capuano V, Spinello A, Zucchiatti I, Gabellini D et al. In vivo evaluation of retinal and choroidal structure in a mouse model of long-lasting diabetes. Effect of topical treatment with citicoline. J Ocul Dis Ther. 2015; 3:1–8. 10.12974/2309-6136.2015.03.01.1
    1. Kitamura Y, Bikbova G, Baba T, Yamamoto S, Oshitari T. In vivo effects of single or combined topical neuroprotective and regenerative agents on degeneration of retinal ganglion cells in rat optic nerve crush model. Sci Rep. 2019; 9(1):101 10.1038/s41598-018-36473-2
    1. Diederich K, Frauenknecht K, Minnerup J, Schneider BK, Schmidt A, Altach E et al. Citicoline enhances neuroregenerative processes after experimental stroke in rats. Stroke 2012;43(7):1931–1940. 10.1161/STROKEAHA.112.654806
    1. Oshitari T, Fujimoto N, Adachi-Usami E. Citicoline has a protective effect on damaged retinal ganglion cells in mouse culture retina. Neuroreport. 2002; 13(16): 2109–2111. 10.1097/00001756-200211150-00023
    1. Oshitari T, Yoshida-Hata N, Yamamoto S. Effect of neurotrophic factors on neuronal apoptosis and neurite regeneration in cultured rat retinas exposed to high glucose. Brain Res. 2010; 1346: 43–51. 10.1016/j.brainres.2010.05.073
    1. Erlich-Malona N, Mendoza-Santiesteban CE, Hedges TR 3rd, Patel N, Monaco C, Cole E. Distinguishing ischaemic optic neuropathy from optic neuritis by ganglion cell analysis. Acta Ophthalmol. 2016; 94(8): e721–e726. 10.1111/aos.13128
    1. Park SW, Ji YS, Heo H. Early macular ganglion cell-inner plexiform layer analysis in non- arteritic anterior ischemic optic neuropathy. Graefes Arch Clin Exp Ophthalmol. 2016; 254(5): 983–989. 10.1007/s00417-015-3230-9

Source: PubMed

3
Abonnere