Feasibility and safety of virtual-reality-based early neurocognitive stimulation in critically ill patients

Marc Turon, Sol Fernandez-Gonzalo, Mercè Jodar, Gemma Gomà, Jaume Montanya, David Hernando, Raquel Bailón, Candelaria de Haro, Victor Gomez-Simon, Josefina Lopez-Aguilar, Rudys Magrans, Melcior Martinez-Perez, Joan Carles Oliva, Lluís Blanch, Marc Turon, Sol Fernandez-Gonzalo, Mercè Jodar, Gemma Gomà, Jaume Montanya, David Hernando, Raquel Bailón, Candelaria de Haro, Victor Gomez-Simon, Josefina Lopez-Aguilar, Rudys Magrans, Melcior Martinez-Perez, Joan Carles Oliva, Lluís Blanch

Abstract

Background: Growing evidence suggests that critical illness often results in significant long-term neurocognitive impairments in one-third of survivors. Although these neurocognitive impairments are long-lasting and devastating for survivors, rehabilitation rarely occurs during or after critical illness. Our aim is to describe an early neurocognitive stimulation intervention based on virtual reality for patients who are critically ill and to present the results of a proof-of-concept study testing the feasibility, safety, and suitability of this intervention.

Methods: Twenty critically ill adult patients undergoing or having undergone mechanical ventilation for ≥24 h received daily 20-min neurocognitive stimulation sessions when awake and alert during their ICU stay. The difficulty of the exercises included in the sessions progressively increased over successive sessions. Physiological data were recorded before, during, and after each session. Safety was assessed through heart rate, peripheral oxygen saturation, and respiratory rate. Heart rate variability analysis, an indirect measure of autonomic activity sensitive to cognitive demands, was used to assess the efficacy of the exercises in stimulating attention and working memory.

Results: Patients successfully completed the sessions on most days. No sessions were stopped early for safety concerns, and no adverse events occurred. Heart rate variability analysis showed that the exercises stimulated attention and working memory. Critically ill patients considered the sessions enjoyable and relaxing without being overly fatiguing.

Conclusions: The results in this proof-of-concept study suggest that a virtual-reality-based neurocognitive intervention is feasible, safe, and tolerable, stimulating cognitive functions and satisfying critically ill patients. Future studies will evaluate the impact of interventions on neurocognitive outcomes. Trial registration Clinical trials.gov identifier: NCT02078206.

Keywords: Critically ill patients; Early intervention; ICU; Neurocognitive impairments; Neurocognitive stimulation; Virtual reality.

Figures

Fig. 1
Fig. 1
Schematic diagram of the smart middleware connecting ENRIC platform, bedside monitor and ventilator (screenshots of bedside monitor and ventilator courtesy of BetterCare®, Barcelona, Spain). The platform uses smart middleware to connect the cognitive stimulation software with input from a motion sensor (Kinect®, Microsoft, Redmond, Washington, USA) that captures and interprets patient movements. The platform also incorporates a system to collect and store physiological data (BetterCare®, Barcelona, Spain) from bedside monitors and ventilators that could be used to adapt the level of cognitive stimulation to patients’ clinical condition
Fig. 2
Fig. 2
Flow diagram of sample. During a period comprising ~9 months, 193 patients were admitted to the ICU; 148 met at least one exclusion criterion. Of the 45 eligible patients, 25 were finally excluded. Thus, 20 patients received the early neurocognitive intervention
Fig. 3
Fig. 3
Time distribution (%) of neurocognitive exercises for each session during the first five sessions. In the first session, passive exercises requiring simple attention and gross motor functions were the most performed exercises. In subsequent sessions, the time spent on passive exercises gradually decreased, while the time spent on exercises focusing on selective attention and working memory increased. Guided-observation exercises were well tolerated for patients from the first session. The most complex exercises, focusing on working memory, were only performed from the third session, and the time assigned for these exercises was increased progressively with each session. Note that in the fifth session, equal time was assigned to each type of exercises

References

    1. Jackson JC, Hart RP, Gordon SM, Shintani A, Truman B, May L, Ely EW. Six-month neuropsychological outcome of medical intensive care unit patients. Crit Care Med. 2003;31:1226–1234. doi: 10.1097/01.CCM.0000059996.30263.94.
    1. Rothenhaüsler HB, Ehrentraut S, Stoll C, Schelling G, Kapfhammer HP. The relationship between cognitive performance and employment and health status in long-term survivors of the acute respiratory distress syndrome: results of an exploratory study. Gen Hosp Psychiatry. 2001;23:90–96. doi: 10.1016/S0163-8343(01)00123-2.
    1. Hopkins RO, Weaver LK, Collingridge D, Parkinson RB, Chan KJ, Orme JF., Jr Two-year cognitive, emotional, and quality-of-life outcomes in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2005;171:340–347. doi: 10.1164/rccm.200406-763OC.
    1. Hopkins RO, Weaver LK, Chan KJ, Orme JF. Quality of life, emotional and cognitive functions following acute respiratory distress syndrome. J Int Neuropsychol Soc. 2004;10:1005–1017.
    1. Sukantarat KT, Burguess PW, Williamson RC, Brett SJ. Prolonged cognitive dysfunction in survivors of critical illness. Anaesthesia. 2005;60:847–853. doi: 10.1111/j.1365-2044.2005.04148.x.
    1. Jones C, Griffits RD, Slater T, Benjamin KS, Wilson S. Significant cognitive dysfunction in non-delirious patients identified during and persisting following critical illness. Intensive Care Med. 2006;32:923–926. doi: 10.1007/s00134-006-0112-y.
    1. Mikkelsen ME, Shull WH, Biester RC, Taichman DB, Lynch S, Demissie E, Hansen-Flaschen J, Christie JD. Cognitive, mood and quality of life impairments in a select population of ARDS survivors. Respirology. 2009;14:76–82. doi: 10.1111/j.1440-1843.2008.01419.x.
    1. Mikkelsen ME, Christie JD, Lanken PN, Biester RC, Thompson BT, Bellamy SL, Localio AR, Demissie E, Hopkins RO, Angus DC. The adult respiratory distress syndrome cognitive outcomes study: long-term neuropsychological function in survivors of acute lung injury. Am J Respir Crit Care Med. 2012;185:1307–1315. doi: 10.1164/rccm.201111-2025OC.
    1. Woon FL, Dunn CB, Hopkins RO. Predicting cognitive sequelae in survivors of critical illness with cognitive screening tests. Am J Respir Crit Care Med. 2012;186:333–340. doi: 10.1164/rccm.201112-2261OC.
    1. Pandharipande PP, Girard TD, Jackson JC, Morandi A, Thompson JL, Pun BT, Brummel NE, Hughes CG, Vasilevskis EE, Shintani AK, Moons KG, Geevarghese SK, Canonico A, Hopkins RO, Bernard GR, Dittus RS, Ely EW. Long-term cognitive impairment after critical illness. N Engl J Med. 2013;369:1306–1316. doi: 10.1056/NEJMoa1301372.
    1. Herridge MS, Tansey CM, Matté A, Tomlinson G, Diaz-Granados N, Cooper A, Guest CB, Mazer CD, Mehta S, Stewart TE, Kudlow P, Cook D, Slutsky AS, Cheung AM, Canadian Critical Care Trials Group Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011;364:1293–1304. doi: 10.1056/NEJMoa1011802.
    1. Norman BC, Jackson JC, Graves JA, Girard TD, Pandharipande PP, Brummel NE, Wang L, Thompson JL, Chandrasekhar R, Ely EW. Employment outcomes after critical illness: an analysis of the bringing to light the risk factors and incidence of neuropsychological dysfunction in ICU survivors cohort. Crit Care Med. 2016;44:2003–2009. doi: 10.1097/CCM.0000000000001849.
    1. Gosselink R, Bott J, Johnson M, Dean E, Nava S, Norrenberg M, Schönhofer B, Stiller K, van de Leur H, Vincent JL. Physiotherapy for adult patients with critical illness: recommendations of the European Respiratory Society and European Society of Intensive Care Medicine Task Force on physiotherapy for critically ill patients. Intensive Care Med. 2008;34:1188–1199. doi: 10.1007/s00134-008-1026-7.
    1. Burtin C, Clerckx B, Robbeets C, Ferdinande P, Langer D, Troosters T, Hermans G, Decramer M, Gosselink R. Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med. 2009;37:2499–2505. doi: 10.1097/CCM.0b013e3181a38937.
    1. Morris PE, Goad A, Thompson C, Taylor K, Harry B, Passmore L, Ross A, Anderson L, Baker S, Sanchez M, Penley L, Howard A, Dixon L, Leach S, Small R, Hite RD, Haponik E. Early intensive care unit mobility therapy in the treatment of acute respiratory failure. Crit Care Med. 2008;36:2238–2243. doi: 10.1097/CCM.0b013e318180b90e.
    1. Bailey P, Thomsen GE, Spuhler VJ, Blair R, Jewkes J, Bezdjian L, Veale K, Rodriquez L, Hopkins RO. Early activity is feasible and safe in respiratory failure patients. Crit Care Med. 2007;35:139–145. doi: 10.1097/01.CCM.0000251130.69568.87.
    1. Brummel NE, Girard TD. Preventing delirium in the intensive care unit. Crit Care Clin. 2013;29:51–65. doi: 10.1016/j.ccc.2012.10.007.
    1. Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, Spears L, Miller M, Franczyk M, Deprizio D, Schmidt GA, Bowman A, Barr R, McCallister KE, Hall JB, Kress JP. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomized controlled trial. Lancet. 2009;373:1874–1882. doi: 10.1016/S0140-6736(09)60658-9.
    1. Brummel NE, Girard TD, Ely EW, Pandharipande PP, Morandi A, Hughes CG, Graves AJ, Shintani A, Murphy E, Work B, Pun BT, Boehm L, Gill TM, Dittus RS, Jackson JC. Feasibility and safety of early combined cognitive and physical therapy for critically ill medical and surgical patients: the Activity and Cognitive Therapy in ICU (ACT-ICU) trial. Intensive Care Med. 2014;40:370–379. doi: 10.1007/s00134-013-3136-0.
    1. Bogdanova Y, Yee MK, Ho VT, Cicerone KD. Computerized cognitive rehabilitation of attention and executive function in acquired brain injury: a systematic review. J Head Trauma Rehabil. 2016;31:419–433. doi: 10.1097/HTR.0000000000000203.
    1. Fernandez-Gonzalo S, Turon M, Jodar M, Pousa E, Hernandez-Rambla C, García R, Palao D. A new computerized cognitive and social cognition training specifically designed for patients with schizophrenia/schizoaffective disorder in early stages of illness: a pilot study. Psychiatry Res. 2015;228:501–509. doi: 10.1016/j.psychres.2015.06.007.
    1. Park G, Vasey MW, Van Bavel JJ, Thayer JF. Cardiac vagal tone is correlated with selective attention to neutral distractors under load. Psychophysiology. 2013;50:398–406. doi: 10.1111/psyp.12029.
    1. Duschek S, Muckenthaler M, Werner N, del Paso GA. Relationships between features of autonomic cardiovascular control and cognitive performance. Biol Psychol. 2009;81:110–117. doi: 10.1016/j.biopsycho.2009.03.003.
    1. Mathewson KJ, Jetha MK, Drmic IE, Bryson SE, Goldberg JO, Hall GB, Santesso DL, Segalowitz SJ, Schmidt LA. Autonomic predictors of Stroop performance in young and middle-aged adults. Int J Psychophysiol. 2010;76:123–129. doi: 10.1016/j.ijpsycho.2010.02.007.
    1. Thayer JF, Hansen AL, Saus-Rose E, Johnsen BH. Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health. Ann Behav Med. 2009;37:141–153. doi: 10.1007/s12160-009-9101-z.
    1. Fernandez-Gonzalo S, Turon M, Gomà G, Martínez-Pérez M, De Haro C, Montanyà J, Jodar M, López-Aguilar J, Blanch L. Early neurocognitive rehabilitation in critically ill patients during ICU stay: a safety study. Intensive Care Med Exp. 2015;3:A994. doi: 10.1186/2197-425X-3-S1-A994.
    1. Turon M, Hernando D, Fernandez-Gonzalo VS, Bailón R, Gomà G, Lázaro J, Montanyà J, Gil E, Martinez-Perez M, de Haro C, López-Aguilar J, Martinez-Rubio A, Jodar M, Laguna P, Blanch L. Effect of an early neurocognitive rehabilitation on autonomic nervous system in critically ill patients. Intensive Care Med Exp. 2015;3:A989. doi: 10.1186/2197-425X-3-S1-A989.
    1. Hernando D, Turon M, Bailón R, Fernandez-Gonzalo S, Lázaro J, Gomà G, Gil E, Montanyà J, López-Aguilar J, de Haro C, Laguna P, Blanch L. Autonomic nervous system assessment in critically ill patients undergoing a cognitive rehabilitation therapy. Proc Comput Cardiol. 2015;42:785–788.
    1. Blanch L, Sales B, Montanya J, Lucangelo U, Garcia-Esquirol O, Villagra A, Chacon E, Estruga A, Borelli M, Burgueño MJ, Oliva JC, Fernandez R, Villar J, Kacmarek R, Murias G. Validation of the Better Care® system to detect ineffective efforts during expiration in mechanically ventilated patients: a pilot study. Intensive Care Med. 2012;38:772–780. doi: 10.1007/s00134-012-2493-4.
    1. Hodgson CL, Stiller K, Needham DM, Tipping CJ, Harrold M, Baldwin CE, Bradley S, Berney S, Caruana LR, Elliott D, Green M, Haines K, Higgins AM, Kaukonen KM, Leditschke IA, Nickels MR, Paratz J, Patman S, Skinner EH, Young PJ, Zanni JM, Denehy L, Webb SA. Expert consensus and recommendations on safety criteria for active mobilization of mechanically ventilated critically ill adults. Crit Care. 2014;18:658. doi: 10.1186/s13054-014-0658-y.
    1. Task Force of the European Society of Cardiology, and the North American Society of Pacing and Electrophysiology Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17:354–381. doi: 10.1093/oxfordjournals.eurheartj.a014868.
    1. Mateo J, Laguna P. Analysis of heart rate variability in the presence of ectopic beats using the heart timing signal. IEEE Trans Biomed Eng. 2003;50:334–343. doi: 10.1109/TBME.2003.808831.
    1. Bailon R, Laouini G, Grao C, Orini M, Laguna P, Meste O. The integral pulse frequency modulation model with time-varying threshold: application to heart rate variability analysis during exercise stress testing. IEEE Trans Biomed Eng. 2011;58:642–652. doi: 10.1109/TBME.2010.2095011.
    1. Quílez ME, López-Aguilar J, Blanch L. Organ crosstalk during acute lung injury, acute respiratory distress syndrome, and mechanical ventilation. Curr Opin Crit Care. 2012;18:23–28. doi: 10.1097/MCC.0b013e32834ef3ea.
    1. Blanch L, Quintel M. Lung-brain cross talk in the critically ill. Intensive Care Med. 2017;43:557–559. doi: 10.1007/s00134-016-4583-1.
    1. Turon M, Fernandez-Gonzalo S, Gomez-Simon V, Blanch L, Jodar M. Cognitive stimulation in ICU patients: should we pay more attention? Crit Care. 2013;17:158. doi: 10.1186/cc12719.
    1. Fernandez-Gonzalo S, Turon M, de Haro C, Lopez-Aguilar J, Jodar M, Blanch L. Do sedation and analgesia contribute to long-term cognitive dysfunction in critical care survivors? Med Intensiva. 2017
    1. Zanni JM, Korupolu R, Fan E, Pradhan P, Janjua K, Palmer JB, Brower RG, Needham DM. Rehabilitation therapy and outcomes in acute respiratory failure: an observational pilot project. J Crit Care. 2010;25:254–262. doi: 10.1016/j.jcrc.2009.10.010.
    1. Jackson JC, Ely EW, Morey MC, Anderson VM, Denne LB, Clune J, Siebert CS, Archer KR, Torres R, Janz D, Schiro E, Jones J, Shintani AK, Levine B, Pun BT, Thompson J, Brummel NE, Hoenig H. Cognitive and physical rehabilitation of intensive care unit survivors: results of the RETURN randomized controlled pilot investigation. Crit Care Med. 2012;40:1088–1097. doi: 10.1097/CCM.0b013e3182373115.
    1. Mehlhorn J, Freytag A, Schmidt K, Brunkhorst FM, Graf J, Troitzsch U, Schlattmann P, Wensing M, Gensichen J. Rehabilitation interventions for postintensive care syndrome: a systematic review. Crit Care Med. 2014;42:1263–1267. doi: 10.1097/CCM.0000000000000148.

Source: PubMed

3
Abonnere