Long-term impact of preterm birth on exercise capacity in healthy young men: a national population-based cohort study

Jenny Svedenkrans, Ewa Henckel, Jan Kowalski, Mikael Norman, Kajsa Bohlin, Jenny Svedenkrans, Ewa Henckel, Jan Kowalski, Mikael Norman, Kajsa Bohlin

Abstract

Background: Increasing numbers of survivors of preterm birth are growing into adulthood today. Long-term health-effects of prematurity are still poorly understood, but include increased risk for diabetes, obesity and cardiovascular diseases in adult life. To test if reduced physical fitness may be a link in the causal chain of preterm birth and diseases in later life, the association of preterm birth and adult exercise capacity was investigated. The hypothesis was that preterm birth contributes independently of other risk factors to lower physical fitness in adulthood.

Methods and findings: Population-based national cohort study of all males conscripting for military service in 1993-2001 and born in Sweden 1973-1983, n = 218,820. Data were retrieved from the Swedish Conscript Register, the Medical Birth Register and the Population and Housing Census 1990. Primary outcome was the results from maximal exercise test (Wmax in Watt) performed at conscription. Association to perinatal and socioeconomic risk factors, other co-variates and confounders were analysed. General linear modelling showed that preterm birth predicted low Wmax in a dose-response related pattern, with 25 Watt reduction in Wmax for the lowest gestational ages, those born ≤27 weeks. Low birth weight for gestational age also independently predicted low Wmax compared to normal and high birth weight (32 Watt reduction for those with a birth weight Standard Deviation Score <2). Low parental education was significantly associated with reduced Wmax (range 17 Watt), as well as both low and high current BMI, with severe obesity resulting in a 16 Watt deficit compared to Wmax top performance.

Conclusion: Being born preterm as well as being born small for gestational age predicts low exercise capacity in otherwise healthy young men. The effect size of being born preterm equal or exceed that of other known risk factors for unfitness in adults, such as low parental education and overweight.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Formation of analyzed cohort.
Figure 1. Formation of analyzed cohort.
One subject may have missing data in more than one category. Wmax = maximal exercise capacity, BMI = Body Mass Index.
Figure 2. Maximal exercise capacity.
Figure 2. Maximal exercise capacity.
Adjusted results expressed as least squared means for maximal exercise capacity (Watt) in relation to the major risk factors. A - Gestational Age categories, B - Birth Weight Standard Deviation Score, C – Education level of the parents and D - BMI. Sec edu. = Secondary education, y = years, BMI = Body Mass Index.

References

    1. Finnström O, Olausson PO, Sedin G, Serenius F, Svenningsen N, et al. (1997) The Swedish national prospective study on extremely low birthweight (ELBW) infants. Incidence, mortality, morbidity and survival in relation to level of care. Acta Paediatr 86: 503–511.
    1. Fellman V, Hellström-Westas L, Norman M, Westgren M, Källén K, et al. (2009) One-year survival of extremely preterm infants after active perinatal care in Sweden. JAMA 301: 2225–2233.
    1. Kilbride HW, Gelatt MC, Sabath RJ (2003) Pulmonary function and exercise capacity for ELBW survivors in preadolescence: effect of neonatal chronic lung disease. J Pediatr 143: 488–493.
    1. Welsh L, Kirkby J, Lum S, Odendaal D, Marlow N, et al. (2010) The EPICure study: maximal exercise and physical activity in school children born extremely preterm. Thorax 65: 165–172.
    1. Vrijlandt EJ, Gerritsen J, Boezen HM, Grevink RG, Duiverman EJ (2006) Lung function and exercise capacity in young adults born prematurely. Am J Respir Crit Care Med 173: 890–896.
    1. de Jong F, Monuteaux MC, van Elburg RM, Gillman MW, Belfort MB (2012) Systematic review and meta-analysis of preterm birth and later systolic blood pressure. Hypertension 59: 226–234.
    1. Johansson S, Iliadou A, Bergvall N, Tuvemo T, Norman M, et al. (2005) Risk of high blood pressure among young men increases with the degree of immaturity at birth. Circulation 112: 3430–3436.
    1. Bonamy AK, Bendito A, Martin H, Andolf E, Sedin G, et al. (2005) Preterm birth contributes to increased vascular resistance and higher blood pressure in adolescent girls. Pediatr Res 58: 845–849.
    1. Hofman PL, Regan F, Jackson WE, Jefferies C, Knight DB, et al. (2004) Premature birth and later insulin resistance. N Engl J Med 351: 2179–2186.
    1. Hovi P, Andersson S, Eriksson JG, Järvenpää AL, Strang-Karlsson S, et al. (2007) Glucose regulation in young adults with very low birth weight. N Engl J Med 356: 2053–2063.
    1. Kaijser M, Bonamy AK, Akre O, Cnattingius S, Granath F, et al. (2009) Perinatal risk factors for diabetes in later life. Diabetes 58: 523–526.
    1. Crump C, Sundquist K, Sundquist J, Winkleby MA (2011) Gestational age at birth and mortality in young adulthood. JAMA 306: 1233–1240.
    1. Thijssen DH, Maiorana AJ, O’Driscoll G, Cable NT, Hopman MT, et al. (2010) Impact of inactivity and exercise on the vasculature in humans. Eur J Appl Physiol 108: 845–875.
    1. Haapanen-Niemi N, Miilunpalo S, Pasanen M, Vuori I, Oja P, et al. (2000) Body mass index, physical inactivity and low level of physical fitness as determinants of all-cause and cardiovascular disease mortality - 6 y follow-up of middle-aged and elderly men and women. Int J Obes Relat Metab Disord 24: 1465–1474.
    1. Bassuk SS, Manson JE (2005) Epidemiological evidence for the role of physical activity in reducing risk of type 2 diabetes and cardiovascular disease. J Appl Physiol 99: 1193–1204.
    1. LaMonte MJ, Blair SN, Church TS (2005) Physical activity and diabetes prevention. J Appl Physiol 99: 1205–1213.
    1. Hackam DG, Khan NA, Hemmelgarn BR, Rabkin SW, Touyz RM, et al. (2010) The 2010 Canadian Hypertension Education Program recommendations for the management of hypertension: part 2 - therapy. Can J Cardiol 26: 249–258.
    1. Ruiz JR, Rizzo NS, Hurtig-Wennlöf A, Ortega FB, Wärnberg J, et al. (2006) Relations of total physical activity and intensity to fitness and fatness in children: the European Youth Heart Study. Am J Clin Nutr 84: 299–303.
    1. Rogers M, Fay TB, Whitfield MF, Tomlinson J, Grunau RE (2005) Aerobic capacity, strength, flexibility, and activity level in unimpaired extremely low birth weight (<or = 800 g) survivors at 17 years of age compared with term-born control subjects. Pediatrics 116: e58–65.
    1. Saigal S, Stoskopf B, Boyle M, Paneth N, Pinelli J, et al. (2007) Comparison of current health, functional limitations, and health care use of young adults who were born with extremely low birth weight and normal birth weight. Pediatrics 119: e562–573.
    1. Kajantie E, Strang-Karlsson S, Hovi P, Räikkönen K, Pesonen AK, et al. (2010) Adults born at very low birth weight exercise less than their peers born at term. J Pediatr 157: 610–616 616: e611.
    1. Hack M, Cartar L, Schluchter M, Klein N, Forrest CB (2007) Self-perceived health, functioning and well-being of very low birth weight infants at age 20 years. J Pediatr 151: 635–641 641: e631–632.
    1. Kriemler S, Keller H, Saigal S, Bar-Or O (2005) Aerobic and lung performance in premature children with and without chronic lung disease of prematurity. Clin J Sport Med 15: 349–355.
    1. Baraldi E, Zanconato S, Zorzi C, Santuz P, Benini F, et al. (1991) Exercise performance in very low birth weight children at the age of 7–12 years. Eur J Pediatr 150: 713–716.
    1. Smith LJ, van Asperen PP, McKay KO, Selvadurai H, Fitzgerald DA (2008) Reduced exercise capacity in children born very preterm. Pediatrics 122: e287–293.
    1. Gross SJ, Iannuzzi DM, Kveselis DA, Anbar RD (1998) Effect of preterm birth on pulmonary function at school age: a prospective controlled study. J Pediatr 133: 188–192.
    1. Clemm H, Røksund O, Thorsen E, Eide GE, Markestad T, et al. (2012) Aerobic capacity and exercise performance in young people born extremely preterm. Pediatrics 129: e97–e105.
    1. The Swedish Medical Birth Register: a summary of content and quality. In: Stockholm SNBoHaW, (2003). Available at . Accessed November 11, 2005.
    1. Population and Housing Census 1990, Part 7: the Planning and Processing of the Population and Housing Census. Stockholm: Statistics Sweden; 1992.
    1. Alexander GR, Himes JH, Kaufman RB, Mor J, Kogan M (1996) A United States national reference for fetal growth. Obstet Gynecol 87: 163–168.
    1. Marsál K, Persson PH, Larsen T, Lilja H, Selbing A, et al. (1996) Intrauterine growth curves based on ultrasonically estimated foetal weights. Acta Paediatr 85: 843–848.
    1. Sweden SC (1982) MIS 1982:4 Socioekonomisk indelning SEI. Statistiska Centralbyrån. pp. 20–21.
    1. Parizkova J (2008) Impact of education on food behaviour, body composition and physical fitness in children. Br J Nutr 99 Suppl 1S26–32.
    1. Moss TJ (2006) Respiratory consequences of preterm birth. Clin Exp Pharmacol Physiol 33: 280–284.
    1. Bonamy AK, Martin H, Jörneskog G, Norman M (2007) Lower skin capillary density, normal endothelial function and higher blood pressure in children born preterm. J Intern Med 262: 635–642.
    1. Schubert U, Müller M, Edstedt Bonamy A-K, Abdul-Khaliq H, Norman M (2011) Aortic growth arrest after preterm birth: a lasting structural change of the vascular tree. Journal of developmental origins of health and disease 2: 218–225.
    1. De Matteo R, Blasch N, Stokes V, Davis P, Harding R (2010) Induced preterm birth in sheep: a suitable model for studying the developmental effects of moderately preterm birth. Reprod Sci 17: 724–733.
    1. Lewandowski AJ, Augustine D, Lamata P, Davis EF, Lazdam M, et al. (2013) Preterm heart in adult life: cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation 127: 197–206.
    1. Nosarti C, Reichenberg A, Murray RM, Cnattingius S, Lambe MP, et al. (2012) Preterm birth and psychiatric disorders in young adult life. Arch Gen Psychiatry 69: E1–8.
    1. Peacock JL, Marston L, Marlow N, Calvert SA, Greenough A (2012) Neonatal and infant outcome in boys and girls born very prematurely. Pediatr Res 71: 305–310.
    1. Hiscock R, Bauld L, Amos A, Platt S (2012) Smoking and socioeconomic status in England: the rise of the never smoker and the disadvantaged smoker. J Public Health (Oxf) 34: 390–396.
    1. Fletcher GF, Balady GJ, Amsterdam EA, Chaitman B, Eckel R, et al. (2001) Exercise standards for testing and training: a statement for healthcare professionals from the American Heart Association. Circulation 104: 1694–1740.
    1. Wei M, Kampert JB, Barlow CE, Nichaman MZ, Gibbons LW, et al. (1999) Relationship between low cardiorespiratory fitness and mortality in normal-weight, overweight, and obese men. JAMA 282: 1547–1553.
    1. Beck S, Wojdyla D, Say L, Betran AP, Merialdi M, et al. (2010) The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull World Health Organ 88: 31–38.
    1. Hult M, Tornhammar P, Ueda P, Chima C, Bonamy AK, et al. (2010) Hypertension, diabetes and overweight: looming legacies of the Biafran famine. PLoS One 5: e13582.

Source: PubMed

3
Abonnere