Anti-neurotrophic effects from autoantibodies in adult diabetes having primary open angle glaucoma or dementia

Mark B Zimering, Thomas E Moritz, Robert J Donnelly, Mark B Zimering, Thomas E Moritz, Robert J Donnelly

Abstract

Aim: To test for anti-endothelial and anti-neurotrophic effects from autoantibodies in subsets of diabetes having open-angle glaucoma, dementia, or control subjects.

Methods: Protein-A eluates from plasma of 20 diabetic subjects having glaucoma or suspects and 34 age-matched controls were tested for effects on neurite outgrowth in rat pheochromocytoma PC12 cells or endothelial cell survival. The mechanism of the diabetic glaucoma autoantibodies' neurite-inhibitory effect was investigated in co-incubations with the selective Rho kinase inhibitor Y27632 or the sulfated proteoglycan synthesis inhibitor sodium chlorate. Stored protein-A eluates from certain diabetic glaucoma or dementia subjects which contained long-lasting, highly stable cell inhibitory substances were characterized using mass spectrometry and amino acid sequencing.

Results: Diabetic primary open angle glaucoma (POAG) or suspects (n = 20) or diabetic dementia (n = 3) autoantibodies caused significantly greater mean inhibition of neurite outgrowth in PC12 cells (p < 0.0001) compared to autoantibodies in control diabetic (n = 24) or non-diabetic (n = 10) subjects without glaucoma (p < 0.01). Neurite inhibition by the diabetic glaucoma autoantibodies was completely abolished by 10 μM concentrations of Y27632 (n = 4). It was substantially reduced by 30 mM concentrations of sodium chlorate (n = 4). Peak, long-lasting activity survived storage ×5 years at 0-4°C and was associated with a restricted subtype of Ig kappa light chain. Diabetic glaucoma or dementia autoantibodies (n = 5) caused contraction and process retraction in quiescent cerebral cortical astrocytes effects which were blocked by 5 μM concentrations of Y27632.

Conclusion: These data suggest that autoantibodies in subsets of adult diabetes having POAG (glaucoma suspects) and/or dementia inhibit neurite outgrowth and promote a reactive astrocyte morphology by a mechanism which may involve activation of the RhoA/p160 ROCK signaling pathway.

Keywords: autoantibodies; dementia; diabetes mellitus; neurite outgrowth; open angle glaucoma.

Figures

Figure 1
Figure 1
Diabetic glaucomatous autoantibodies inhibit neurite expression in PC 12 cells (A) highest neurite-inhibitory activity was associated with glaucomatous vision loss (B) and was eliminated by treatment with Y27632 (C) or 30 mM sodium chlorate (D). (A-D) Thirty microgram per milliliter concentrations of the protein-A eluate fraction of plasma was incubated with PC12 cells in the presence or absence of 10 μM concentrations of Y27632 (C) or 30 mM concentrations of sodium chlorate (D) as described in Section “Materials and Methods.” Results (mean ± 1 SD of four different protein-A eluates) are expressed as % neurite expression compared to cells incubated with 10 ng/mL concentrations of basic fibroblast growth factor alone [i.e., 100%, open bars (C,D)]. DM, diabetes mellitus; Glc, glaucoma or suspect (susp); Dmt, dementia; VF, visual field.
Figure 2
Figure 2
Effect of diabetic glaucomatous autoantibodies on astrocyte morphology. Morphology in cerebral cortical astrocytes (A) before or (B) 30 min after addition of 10 μg/mL concentration of protein-A eluate from type 2 DM and glaucoma; (C) before or (D) 10 min after addition of 3 μg/mL concentration of the protein-A eluate fraction from type 2 DM having glaucoma and Alzheimer’s type dementia (Pt 1). Antibodies caused varying degrees of withdrawal of thick astrocyte processes associated with increased stress fiber expression (arrows), and cell contraction (vertical lines). Astrocytes cultured in the presence of 10 μM concentrations of Y27632 for 10 min before (E) and after (F) addition of a 3 μg/mL concentration of the Pt 1 protein-A eluate fraction did not undergo similar changes in their appearance. Results similar to those shown in (A–D) were obtained in eight experiments using 3–10 μg/mL concentrations of autoantibodies from five different diabetic glaucoma patients. Much less if any acute change in morphology was observed (n = 4 experiments) using 10–20 μg/mL concentrations of protein-A eluate from four type 2 DM subjects without glaucoma.

References

    1. Abe K., Misawa M. (2003). Astrocyte stellation induced by rho kinase inhibitors in culture. Brain Res. Dev. Brain Res. 143, 99–10410.1016/S0165-3806(03)00096-8
    1. Agapova O. A., Kaufman P. L., Lucarelli M. J., Gabelt B. T., Hernandez M. R. (2003). Differential expression of matrix metalloproteinases in monkey eyes with experimental glaucoma or optic nerve transection. Brain Res. 967, 132–14310.1016/S0006-8993(02)04234-8
    1. Allen C., Srivastava K., Bayraktutan U. (2010). Small GTPase RhoA and its effector rho kinase mediate oxygen glucose deprivation-evoked in vitro cerebral barrier dysfunction. Stroke 41, 2056–206310.1161/STROKEAHA.109.574939
    1. Ambrosino D. M., Schiffman G., Gotschlich E. C., Schur P. H., Rosenberg G. A., DeLange G. G., et al. (1985). Correlation between G2m(n) immunoglobulin allotype and human antibody response and susceptibility to polysaccharide encapsulated bacteria. J. Clin. Invest. 75, 1935–194210.1172/JCI111909
    1. Anderson M. G., Libby R. T., Gould D. B., Smith R. S., John S. W. (2005). High-dose radiation with bone marrow transfer prevents neurodegeneration in an inherited glaucoma. Proc. Natl. Acad. Sci. U.S.A. 102, 4566–457110.1073/pnas.0409644102
    1. Candiello J., Cole G. J., Halfter W. (2010). Age-dependent changes in the structure, composition and biophysical properties of a human basement membrane. Matrix Biol. 29, 402–41010.1016/j.matbio.2010.03.004
    1. Crish S. D., Calkins D. J. (2011). Neurodegeneration in glaucoma: progression and calcium-dependent intracellular mechanisms. Neuroscience 176, 1–1110.1016/j.neuroscience.2010.12.036
    1. Dickson B. J. (2001). Rho GTPases in growth cone guidance. Curr. Opin. Neurobiol. 11, 103–11010.1016/S0959-4388(00)00180-X
    1. Fillit H. M., Kemeny E., Luine V., Weksler M. E., Zabriskie J. B. (1987). Antivascular antibodies in the sera of patients with senile dementia of the Alzheimer’s type. J. Gerontol. 42, 180–18410.1093/geronj/42.2.180
    1. Fuks Z., Persaud R. S., Alfieri A., McLoughlin M., Ehleiter D., Schwartz J. L., et al. (1994). Basic fibroblast growth factor protects endothelial cells against radiation-induced programmed cell death in vitro and in vivo. Cancer Res. 54, 2582–2590
    1. Goldacre M. J., Wotton C. J., Keenan T. D. (2012). Risk of selected eye diseases in people admitted to hospital for hypertension or diabetes mellitus: record linkage studies. Br. J. Ophthalmol. 96, 872–87610.1136/bjophthalmol-2012-302591
    1. Granoff D. M., Pandey J. P., Boies E., Squires J., Munson R. S., Suarez B. (1984). Response to immunization with Haemophilus influenzae type b polysaccharide-pertussis vaccine and risk of Haemophilus meningitis in children with the Km(1) immunoglobulin allotype. J. Clin. Invest. 74, 1708–171410.1172/JCI111588
    1. Hoogewerf A. J., Cisar L. A., Evans D. C., Bensadoun A. (1991). Effect of chlorate on the sulfation of lipoprotein lipase and heparan sulfate proteoglycans. Sulfation of heparan sulfate proteoglycans affects lipoprotein lipase degradation. J. Biol. Chem. 266, 16564–16571
    1. Inatani M., Irie F., Plump A. S., Tessier-Lavigne M., Yamaguchi Y. (2003). Mammalian brain morphogenesis and midline axon guidance require heparan sulfate. Science 302, 1044–104610.1126/science.1090497
    1. Ishizaki T., Uehata M., Tamechika I., Keel J., Nonomura K., Maekawa M., et al. (2000). Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol. Pharmacol. 57, 976–983
    1. Kameda T., Inoue T., Inatani M., Fujimoto T., Honjo M., Kasaoka N., et al. (2012). The effect of Rho-associated protein kinase inhibitor on monkey Schlemm’s canal endothelial cells. Invest. Ophthalmol. Vis. Sci. 53, 3092–3103
    1. Kim H. S., Park C. K. (2005). Retinal ganglion cell death is delayed by activation of retinal intrinsic cell survival program. Brain Res. 1057, 17–2810.1016/j.brainres.2005.07.059
    1. Klein B. E., Klein R., Jensen S. C. (1994). Open-angle glaucoma and older-onset diabetes. The Beaver Dam Eye Study. Ophthalmology 101, 1173–1177
    1. Kuehn M. H., Fingert J. H., Kwon Y. H. (2005). Retinal ganglion cell death in glaucoma: mechanisms and neuroprotective strategies. Ophthalmol. Clin. North Am. 18, 383–39510.1016/j.ohc.2005.04.002
    1. Kumar J., Epstein D. L. (2011). Rho GTPase-mediated cytoskeletal organization in Schlemm’s canal cells play a critical role in the regulation of aqueous humor outflow facility. J. Cell. Biochem. 112, 600–60610.1002/jcb.22950
    1. Lee J. S., von der Hardt S., Rusch M. A., Stringer S. E., Stickney H. L., Talbot W. S., et al. (2004). Axon sorting in the optic tract requires HSPG synthesis by ext2 (dackel) and extl3 (boxer). Neuron 44, 947–96010.1016/j.neuron.2004.11.029
    1. Leske M. C., Connell A. M., Wu S. Y., Hyman L. G., Schachat A. P. (1994). Risk factors for open-angle glaucoma. The Barbados Eye Study. Ophthalmology 101, 1173–1177
    1. Lucas A. H., Langley R. J., Granoff D. M., Nahm M. H., Kitamura M. Y., Scott M. G. (1991). An idiotypic marker associated with a germ-line encoded kappa light chain variable region that predominates the vaccine-induced human antibody response to the Haemophilus influenzae b polysaccharide. J. Clin. Invest. 88, 1811–181810.1172/JCI115502
    1. Marshall E. C. (1989). Racial differences in the presentation of chronic open-angle glaucoma. J. Am. Optom. Assoc. 60, 760–767
    1. Mayer G., Hamelin J., Asselin M. C., Pasquato A., Marcinkiewicz E., Tang M., et al. (2008). The regulated cell surface zymogen activation of the proprotein convertase PC5A directs the processing of its secretory substrates. J. Biol. Chem. 283, 2373–238410.1074/jbc.M805971200
    1. Negishi M., Lu D., Zhang Y. Q., Sawada Y., Sasaki T., Kayo T., et al. (2001). Upregulatory expression of furin and transforming growth factor-beta by fluid shear stress in vascular endothelial cells. Arterioscler. Thromb. Vasc. Biol. 21, 785–79010.1161/01.ATV.21.5.785
    1. Ogata-Iwao M., Inatani M., Iwao K., Takihara Y., Nakaishi-Fukuchi Y., Irie F., et al. (2011). Heparan sulfate regulates intraretinal axon pathfinding by retinal ganglion cells. Invest. Ophthalmol. Vis. Sci. 52, 6671–667910.1167/iovs.11-7559
    1. Properzi F., Lin R., Kwok J., Naidu M., van Kuppevelt T. H., Ten Dam G. B., et al. (2008). Heparan sulphate proteoglycans in glia and in the normal and injured CNS: expression of sulphotransferases and changes in sulphation. Eur. J. Neurosci. 27, 593–60410.1111/j.1460-9568.2008.06042.x
    1. Quigley H. A. (2011). Glaucoma. Lancet 377, 1367–137710.1016/S0140-6736(10)61423-7
    1. Remacle A. G., Shiryaev S. A., Oh E. S., Cieplak P., Srinivasan A., Wei G., et al. (2008). Substrate cleavage analysis of furin and related proprotein convertases. A comparative study. J. Biol. Chem. 283, 20897–2090610.1074/jbc.M803762200
    1. Ryu J. K., McLarnon J. G. (2009). A leaky blood-brain barrier, fibrinogen infiltration and microglial reactivity in inflamed Alzheimer’s disease brain. J. Cell. Mol. Med. 13, 2911–292510.1111/j.1582-4934.2008.00434.x
    1. Scholefield Z., Yates E. A., Wayne G., Amour A., McDowell W., Turnbull J. E. (2003). Heparan sulfate regulates amyloid precursor protein processing by BACE1, the Alzheimer’s beta-secretase. J. Cell Biol. 163, 97–10710.1083/jcb.200303059
    1. Shackelford P. G., Granoff D. M., Nahm M. H., Scott M. G., Suarez B., Pandey J. P., et al. (1985). Relation of age, race, and allotype to immunoglobulin subclass concentrations. Pediatr. Res. 19, 846–84910.1203/00006450-198508000-00014
    1. Sommer A. (1996). Glaucoma risk factors observed in the Baltimore Eye Survey. Curr. Opin. Ophthalmol. 7, 93–9810.1097/00055735-199604000-00016
    1. Soto I., Rosenthal J. J., Blagburn J. M., Blanco R. E. (2006). Fibroblast growth factor 2 applied to the optic nerve after axotomy up-regulates BDNF and TrkB in ganglion cells by activating the ERK and PKA signaling pathways. J. Neurochem. 96, 82–9610.1111/j.1471-4159.2005.03510.x
    1. Stewart L. L., Field L. L., Ross S., McArthur R. G. (1993). Genetic risk factors in diabetic retinopathy. Diabetologia 36, 1293–129810.1007/BF00400808
    1. Tamura H., Kawakami H., Kanamoto T., Kato T., Yokoyama T., Sasaki K., et al. (2006). High frequency of open-angle glaucoma in Japanese patients with Alzheimer’s disease. J. Neurol. Sci. 246, 79–8310.1016/j.jns.2006.02.009
    1. Tezel G., Edward D. P., Wax M. B. (1999). Serum autoantibodies to optic nerve head glycosaminoglycans in patients with glaucoma. Arch. Ophthalmol. 117, 917–92410.1001/archopht.117.7.917
    1. Tezel G., Wax M. B. (2004). The immune system and glaucoma. Curr. Opin. Ophthalmol. 15, 80–8410.1097/00055735-200404000-00003
    1. Tura A., Schuettauf F., Monnier P. P., Bartz-Schmidt K. U., Henke-Fahle S. (2009). Efficacy of Rho-kinase inhibition in promoting cell survival and reducing reactive gliosis in the rodent retina. Invest. Ophthalmol. Vis. Sci. 50, 452–46110.1167/iovs.08-1973
    1. Uehata M., Ishizaki T., Satoh H., Ono T., Kawahara T., Morishita T., et al. (1997). Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990–99410.1038/40187
    1. van Paassen P., Duijvestijn A., Debrus-Palmans L., Damoiseaux J., Vroomen M., Tervaert J. W. (2007). Induction of endothelial cell apoptosis by IgG antibodies from SLE patients with nephropathy: a potential role for anti-endothelial cell antibodies. Ann. N. Y. Acad. Sci. 1108, 147–15610.1196/annals.1422.017
    1. Wax M. B., Tezel G., Yang J., Peng G., Patil R. V., Agarwal N., et al. (2008). Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived fas-ligand. J. Neurosci. 28, 12085–1209610.1523/JNEUROSCI.3200-08.2008
    1. Williams G. C. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398–41110.2307/2405809
    1. Wu T. T., Kabat E. A. (1970). An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J. Exp. Med. 132, 211–25010.1084/jem.132.2.211
    1. Zimering M. B. (2010). Recurrent macular edema and stroke syndrome in type 1 diabetes mellitus with potent endothelial cell inhibitory autoantibodies. Endocr. Pract. 16, 842–85010.4158/
    1. Zimering M. B., Alder J., Pan Z., Donnelly R. J. (2011). Anti-endothelial and anti-neuronal effects from auto-antibodies in subsets of adult diabetes having a cluster of microvascular complications. Diabetes Res. Clin. Pract. 93, 95–10510.1016/j.diabres.2011.05.018
    1. Zimering M. B., Anderson R. J., Luo P., Moritz T. VADT Investigators (2008). Plasma basic fibroblast growth factor is correlated with plasminogen activator inhibitor-1 concentration in adults from the Veterans Affairs Diabetes Trial. Metab. Clin. Exp. 57, 1563–156910.1016/j.metabol.2008.06.012
    1. Zimering M. B., Anderson R. J., Moritz T. E., Ge L., Investigators for the VADT (2009a). Low plasma basic fibroblast growth factor is associated with laser photocoagulation treatment in adult type 2 diabetes mellitus from the Veterans Affairs Diabetes Trial. Metab. Clin. Exp. 58, 393–40010.1016/j.metabol.2008.10.014
    1. Zimering M. B., Anderson R. J., Moritz T. E., Ge L. VADT Investigators (2009b). Endothelial cell inhibitory auto-antibodies are associated with laser photocoagulation in adults from the Veterans Affairs Diabetes Trial. Metab. Clin. Exp. 58, 882–88710.1016/j.metabol.2008.10.014
    1. Zimering M. B., Pan Z. (2009). Autoantibodies in type 2 diabetes induce stress fiber formation and apoptosis in endothelial cells. J. Clin. Endocrinol. Metab. 94, 2171–217710.1210/jc.2008-2354
    1. Zimering M. B., Thakker-Varia S. (2002). Increased fibroblast growth factor-like autoantibodies in serum from a subset of patients with cancer-associated hypercalcemia. Life Sci. 71, 2939–295910.1016/S0024-3205(02)02160-4

Source: PubMed

3
Abonnere