Reduction of Pressure Pain Sensitivity as Novel Non-pharmacological Therapeutic Approach to Type 2 Diabetes: A Randomized Trial

Jens Faber, Ebbe Eldrup, Christian Selmer, Caroline Pichat, Sofie Korsgaard Hecquet, Torquil Watt, Svend Kreiner, Benny Karpatschof, Finn Gyntelberg, Søren Ballegaard, Albert Gjedde, Jens Faber, Ebbe Eldrup, Christian Selmer, Caroline Pichat, Sofie Korsgaard Hecquet, Torquil Watt, Svend Kreiner, Benny Karpatschof, Finn Gyntelberg, Søren Ballegaard, Albert Gjedde

Abstract

Background: Autonomic nervous system dysfunction (ANSD) is known to affect glucose metabolism in the mammalian body. Tradition holds that glucose homeostasis is regulated by the peripheral nervous system, and contemporary therapeutic intervention reflects this convention.

Objectives: The present study tested the role of cerebral regulation of ANSD as consequence of novel understanding of glucose metabolism and treatment target in type 2 diabetes (T2D), suggested by the claim that the pressure pain sensitivity (PPS) of the chest bone periosteum may be a measure of cerebral ANSD.

Design: In a randomized controlled trial of 144 patients with T2D, we tested the claim that 6 months of this treatment would reduce PPS and improve peripheral glucose metabolism.

Results: In the active treatment group, mean glycated hemoglobin A1c (HbA1c) declined from 53.8 to 50.5 mmol/mol (intragroup p = 0.001), compared with the change from 53.8 to 53.4 mmol/mol in the control group, with the same level of diabetes treatment but not receiving the active treatment (between group p = 0.036). Mean PPS declined from 76.6 to 56.1 units (p < 0.001) in the active treatment group and from 77.5 to 72.8 units (p = 0.02; between group p < 0.001) in the control group. Changes of PPS and HbA1c were correlated (r = 0.37; p < 0.001).

Conclusion: We conclude that the proposed approach to treatment of T2D is a potential supplement to conventional therapy.

Clinical trial registration: www.clinicaltrials.gov (NCT03576430).

Keywords: HbA1c; autonomic dysfunction; glucose control; glucose homeostasis; lateral hypothalamus; non-pharmacological intervention; pressure pain sensitivity; type 2 diabetes.

Conflict of interest statement

SB is a shareholder in the company UllCare A/S that holds the patent for the PPS-measurement device. He did not participate in patient selection, examinations, or evaluation of the examinations. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Faber, Eldrup, Selmer, Pichat, Hecquet, Watt, Kreiner, Karpatschof, Gyntelberg, Ballegaard and Gjedde.

Figures

FIGURE 1
FIGURE 1
Consort diagram.
FIGURE 2
FIGURE 2
Reduction in HbA1c (mmol/mol) over 6 months in the active and control groups; mean ± SE; p = 0.035 (n = 52 active group, n = 60 control group). HbA1c, glycated hemoglobin.
FIGURE 3
FIGURE 3
Reduction in HbA1c (mmol/mol) over 6 months among responders (a decrease in PPS ≥ 15 arbitrary units) versus non-responders (a decrease in PPS less than 15 arbitrary units); (active and control group together) mean ± SE; p < 0.001 (n = 52 in responder group and n = 60 in non-responder group). HbA1c, glycated hemoglobin; PPS, pressure pain sensitivity.
FIGURE 4
FIGURE 4
Correlation between reduction in PPS (arbitrary units) and reduction in HbA1c (mmol/mol) over the 6-month study period, including both the active and control groups; n = 112; r = 0.37; p < 0.001. PPS, pressure pain sensitivity; HbA1c, glycated hemoglobin A1c.
FIGURE 5
FIGURE 5
Overview of the neurophysiological pathways of the PPS concept. (A) Measurement site: pressure pain sensitivity is measured at the periosteum of the chest bone, rather than that of the skin. (B) Distinction between the polymodal receptor (periosteum) and the mechano receptor (skin): the dual function of the polymodal sensor cell in contrast to the other local sensory cells. Pressure pain threshold changes by the level of sympathetic activity. (C) Reactions of the polymodal sensor cell: the reactions of the polymodal sensor cell in response to the degree of applied pressure. (D) Two kinds for signals from periosteum to the brain: noxious (red, lateral spinothalamic tract) and non-noxious signal (blue, anterior spinothalamic tract) from A-delta and C-fibers use different pathways to the brain. (E) Signal pathways to the brain: transmission pathways of noxious and non-noxious sensory nerve stimulation to thalamus and somatosensoric areas of the cerebral cortex. (F) Sagittal view of brain with thalamus and hypothalamus: thalamus and hypothalamus. Both kinds of signals from the A-delta and C-fibers reach the thalamus and from there transmit to the lateral hypothalamus. (G) Frontal view of lateral hypothalamus: the lateral hypothalamus with the close association between homeostatic regulation of metabolism, wakefulness and Warning and Alarm system by the Orexin system, GABA (gamma aminobutyric acid) and MCH (melanin concentrating hormone).

References

    1. Abdo H., Calvo-Enrique L., Lopez J. M., Song J., Zhang M.-D., Usoskin D., et al. (2019). Specialized cutaneous schwann cells initiate pain sensation. Science 365 695–699. 10.1126/science.aax6452
    1. Arrigoni E., Chee M. J. S., Fuller P. M. (2019). To eat or to sleep: that is a lateral hypothalamic question. Neuropharmacology 154 34–49. 10.1016/j.neuropharm.2018.11.017
    1. Axelsson C. K., Ballegaard S., Karpatschof B., Schousen P. (2014). Pressure pain sensitivity as a marker for stress and pressure pain sensitivity-guided stress management in women with primary breast cancer. Scand. J. Clin. Lab. Invest. 74 399–407. 10.3109/00365513.2014.900187
    1. Ballegaard S., Bergmann N., Karpatschof B., Kristiansen J., Gyntelberg F., Arendt-Nielsen L., et al. (2015). Association between pressure pain sensitivity and autonomic function as assessed by a tilt table test. Scand. J. Clin. Lab. Invest. 75 345–354. 10.3109/00365513.2015.1028095
    1. Ballegaard S., Bergmann N., Karpatschof B., Kristiansen J., Gyntelberg F., Arendt-Nielsen L., et al. (2016). Association between depression, pressure pain sensitivity, stress and autonomous nervous system function in stable ischemic heart disease: impact of beta-adrenergic receptor blockade. J. Behav. Brain Sci. 6 317–328. 10.4236/jbbs.2016.68031
    1. Ballegaard S., Borg E., Karpatschof B., Nyboe J., Johannessen A. (2004). Long-term effects of integrated rehabilitation in patients with advanced angina pectoris: a nonrandomized comparative study. J. Altern. Complement Med. 10 777–783. 10.1089/acm.2004.10.777
    1. Ballegaard S., Johannessen A., Karpatschof B., Nyboe J. (1999). Addition of acupuncture and self-care education in the treatment of patients with severe angina pectoris may be cost beneficial: an open, prospective study. J. Altern. Complement Med. 5 405–413. 10.1089/acm.1999.5.405
    1. Ballegaard S., Karpatschof B., Trojaborg W., Hansen A. M., Magnusson G., Petersen P. B. (2009). A simple and objective marker for stress. Scand. J. Clin. Lab. Invest. 69 713–721. 10.3109/00365510903042734
    1. Ballegaard S., Petersen P. B., Gyntelberg F., Faber J. (2012). The association between pressure pain sensitivity, and answers to questionnaires estimating psychological stress level in the workplace. A feasibility study. Scand. J. Clin. Lab. Invest. 72 459–466. 10.3109/00365513.2012.695023
    1. Ballegaard S., Petersen P. B., Harboe G. S., Karpatschof B., Gyntelberg F., Faber J. (2014). The association between changes in pressure pain sensitivity and changes in cardiovascular physiological factors associated with persistent stress. Scand. J. Clin. Lab. Invest. 74 116–125. 10.3109/00365513.2013.862847
    1. Bech P. (2007). Dose-response relationship of pregabalin in patients with generalized anxiety disorder. A pooled analysis of four placebo-controlled trials. Pharmacopsychiatry 40 163–168. 10.1055/s-2007-984400
    1. Bergmann N., Ballegaard S., Bech P., Hjalmarson A., Krogh J., Gyntelberg F., et al. (2014). The effect of daily self-measurement of pressure pain sensitivity followed by acupressure on depression and quality of life versus treatment as usual in ischemic heart disease: a randomized clinical trial. PLoS One 9:e97553. 10.1371/journal.pone.0097553
    1. Bergmann N., Ballegaard S., Holmager P., Kristiansen J., Gyntelberg F., Andersen L. J., et al. (2013). Pressure pain sensitivity: a new method of stress measurement in patients with ischemic heart disease. Scand. J. Clin. Lab. Invest. 73 373–379. 10.3109/00365513.2013.785588
    1. Bernardi L., Spallone V., Stevens M., Hilsted J., Frontoni S., Pop-Busui R., et al. (2011). Methods of investigation for cardiac autonomic dysfunction in human research studies. Diabetes Metab. Res. Rev. 27 654–664. 10.1002/dmrr.1224
    1. Blais M., Baer L. (2010). “Understanding rating scales and assessment instruments,” in Handbook of Clinical Rating Scales and Assessment in Psychiatry and Mental Health, eds Baer L., Blais M. A., (Totowa, NJ: Humana Press; ), 1–6. 10.1007/978-1-59745-387-5_1
    1. Carpenter K. L. H., Baranek G. T., Copeland W. E., Compton S., Zucker N., Dawson G., et al. (2019). Sensory over-responsivity: an early risk factor for anxiety and behavioral challenges in young children. J. Abnorm. Child. Psychol. 47 1075–1088. 10.1007/s10802-018-0502-y
    1. Dias F. C., Alves V. S., Matias D. O., Figueiredo C. P., Miranda A. L. P., Passos G. F., et al. (2019). The selective TRPV4 channel antagonist HC-067047 attenuates mechanical allodynia in diabetic mice. Eur. J. Pharmacol. 856:172408. 10.1016/j.ejphar.2019.172408
    1. Doan R. A., Monk K. R. (2019). Glia in the skin activate pain responses. Science 365, 641–642. 10.1126/science.aay6144
    1. Faruque L. I., Wiebe N., Ehteshami-Afshar A., Liu Y., Dianati-Maleki N., Hemmelgarn B. R., et al. (2017). Effect of telemedicine on glycated hemoglobin in diabetes: a systematic review and meta-analysis of randomized trials. CMAJ 189 E341–E364. 10.1503/cmaj.150885
    1. Fleischer J., Lebech Cichosz S., Hoeyem P., Laugesen E., Loegstrup Poulsen P., Sandahl Christiansen J., et al. (2015). Erratum. Glycemic variability is associated with reduced cardiac autonomic modulation in women with Type 2 diabetes. Diabetes Care 38:2188. 10.2337/dc15-er11
    1. Franco A. C., Prado W. A. (1996). Antinociceptive effects of stimulation of discrete sites in the rat hypothalamus: evidence for the participation of the lateral hypothalamus area in descending pain suppression mechanisms. Braz. J. Med. Biol. Res. 29 1531–1541.
    1. Ge H.-Y., Nie H., Graven-Nielsen T., Danneskiold-Samsøe B., Arendt-Nielsen L. (2012). Descending pain modulation and its interaction with peripheral sensitization following sustained isometric muscle contraction in fibromyalgia. Eur. J. Pain 16 196–203. 10.1016/j.ejpain.2011.06.008
    1. Güemes A., Georgiou P. (2018). Review of the role of the nervous system in glucose homoeostasis and future perspectives towards the management of diabetes. Bioelectron. Med. 4:9. 10.1186/s42234-018-0009-4
    1. Hansen C. S., Frandsen C. S., Fleischer J., Vistisen D., Holst J. J., Tarnow L., et al. (2019). Liraglutide-induced weight loss may be affected by autonomic regulation in type 1 diabetes. Front. Endocrinol. (Lausanne) 10:242. 10.3389/fendo.2019.00242
    1. Hedges L. V., Olkin I. (1985). Statistical Methods for Meta-Analysis. Cambridge, MA: Academic Press.
    1. Hirst J. A., Farmer A. J., Ali R., Roberts N. W., Stevens R. J. (2012). Quantifying the effect of metformin treatment and dose on glycemic control. Diabetes Care 35 446–454. 10.2337/dc11-1465
    1. Kakutani-Hatayama M., Kadoya M., Morimoto A., Miyoshi A., Kosaka-Hamamoto K., Kusunoki Y., et al. (2020). Associations of sleep quality, sleep apnea and autonomic function with insulin secretion and sensitivity: HSCAA study. Metabol. Open 6:100033. 10.1016/j.metop.2020.100033
    1. Khosla S., Drake M. T., Volkman T. L., Thicke B. S., Achenbach S. J., Atkinson E. J., et al. (2018). Sympathetic β1-adrenergic signaling contributes to regulation of human bone metabolism. J. Clin. Invest. 128 4832–4842. 10.1172/JCI122151
    1. Lundqvist M. H., Almby K., Abrahamsson N., Eriksson J. W. (2019). Is the brain a Key player in glucose regulation and development of type 2 diabetes? Front. Physiol. 10:457. 10.3389/fphys.2019.00457
    1. Magnusson G., Ballegaard S., Karpatschof B., Nyboe J. (2010). Long-term effects of integrated rehabilitation in patients with stroke: a nonrandomized comparative feasibility study. J. Altern. Complement Med. 16 369–374. 10.1089/acm.2009.0097
    1. Meller T., Stiehm F., Malinowski R., Thieme K. (2016). [Baroreflex sensitivity and chronic pain?: pathogenetic significance and clinical implications]. Schmerz 30 470–476. 10.1007/s00482-016-0150-5
    1. Mohr A. A., Garcia-Serrano A. M., Vieira J. P., Skoug C., Davidsson H., Duarte J. M. (2020). A glucose-stimulated BOLD fMRI study of hypothalamic dysfunction in mice fed a high-fat and high-sucrose diet. J. Cereb. Blood Flow Metab. 10.1177/0271678X20942397 [Epub ahead of print].
    1. Murakami M., Ohba T., Kushikata T., Niwa H., Kurose A., Imaizumi T., et al. (2015). Involvement of the orexin system in sympathetic nerve regulation. Biochem. Biophys. Res. Commun. 460 1076–1081. 10.1016/j.bbrc.2015.03.157
    1. Nencini S., Ivanusic J. J. (2016). The physiology of bone pain. how much do we really know? Front. Physiol. 7:157. 10.3389/fphys.2016.00157
    1. Peterson H. R., Rothschild M., Weinberg C. R., Fell R. D., McLeish K. R., Pfeifer M. A. (1988). Body fat and the activity of the autonomic nervous system. N. Engl. J. Med. 318 1077–1083. 10.1056/NEJM198804283181701
    1. Rainbow T. C., Parsons B., Wolfe B. B. (1984). Quantitative autoradiography of beta 1- and beta 2-adrenergic receptors in rat brain. Proc. Natl. Acad. Sci. U.S.A. 81 1585–1589. 10.1073/pnas.81.5.1585
    1. Richner M., Pallesen L. T., Ulrichsen M., Poulsen E. T., Holm T. H., Login H., et al. (2019). Sortilin gates neurotensin and BDNF signaling to control peripheral neuropathic pain. Sci. Adv. 5:eaav9946. 10.1126/sciadv.aav9946
    1. Saito I., Hitsumoto S., Maruyama K., Nishida W., Eguchi E., Kato T., et al. (2015). Heart rate variability, insulin resistance, and insulin sensitivity in japanese adults: the toon health study. J. Epidemiol. 25 583–591. 10.2188/jea.JE20140254
    1. Spallone V. (2019). Update on the impact, diagnosis and management of cardiovascular autonomic neuropathy in diabetes: what is defined, what is new, and what is unmet. Diabetes Metab. J. 43 3–30. 10.4093/dmj.2018.0259
    1. Spallone V., Ziegler D., Freeman R., Bernardi L., Frontoni S., Pop-Busui R., et al. (2011). Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes Metab. Res. Rev. 27 639–653. 10.1002/dmrr.1239
    1. Suokas A. K., Walsh D. A., McWilliams D. F., Condon L., Moreton B., Wylde V., et al. (2012). Quantitative sensory testing in painful osteoarthritis: a systematic review and meta-analysis. Osteoarthr. Cartil. 20 1075–1085. 10.1016/j.joca.2012.06.009
    1. Tesfaye S., Boulton A. J. M., Dyck P. J., Freeman R., Horowitz M., Kempler P., et al. (2010). Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 33 2285–2293. 10.2337/dc10-1303
    1. Thorens B. (2011). Brain glucose sensing and neural regulation of insulin and glucagon secretion. Diabetes Obes. Metab. 13(Suppl. 1) 82–88. 10.1111/j.1463-1326.2011.01453.x
    1. Uvnäs-Moberg K., Handlin L., Petersson M. (2014). Self-soothing behaviors with particular reference to oxytocin release induced by non-noxious sensory stimulation. Front. Psychol. 5:1529. 10.3389/fpsyg.2014.01529
    1. Vanìèek V., Tuèek M., Ballegaard S. (2017). Pressure pain sensitivity: marker for stress affecting general health. Cent. Eur. J. Public Health 25 64–66. 10.21101/cejph.a4931
    1. Veldhuis N. A., Poole D. P., Grace M., McIntyre P., Bunnett N. W. (2015). The G protein-coupled receptor-transient receptor potential channel axis: molecular insights for targeting disorders of sensation and inflammation. Pharmacol. Rev. 67 36–73. 10.1124/pr.114.009555
    1. Vinik A. I., Nevoret M.-L., Casellini C., Parson H. (2013). Diabetic neuropathy. Endocrinol. Metab. Clin. North Am. 42 747–787. 10.1016/j.ecl.2013.06.001
    1. Wada E., Onoue T., Kobayashi T., Handa T., Hayase A., Ito M., et al. (2020). Flash glucose monitoring helps achieve better glycemic control than conventional self-monitoring of blood glucose in non-insulin-treated type 2 diabetes: a randomized controlled trial. BMJ Open Diab. Res. Care 8:e001115. 10.1136/bmjdrc-2019-001115
    1. Wang R., Liu X., Hentges S. T., Dunn-Meynell A. A., Levin B. E., Wang W., et al. (2004). The regulation of glucose-excited neurons in the hypothalamic arcuate nucleus by glucose and feeding-relevant peptides. Diabetes 53 1959–1965. 10.2337/diabetes.53.8.1959
    1. Williams P. L., Bannister L. H., Berry M. M., Collins P., Dyson M., Dussek J. E., et al. (1995). Gray’s Anatomy: The Anatomical Basis of Medicine and Surgery, 38th Edn. New York, NY: Churchill Livingstone.
    1. Zhang X., van den Pol A. N. (2016). Hypothalamic arcuate nucleus tyrosine hydroxylase neurons play orexigenic role in energy homeostasis. Nat. Neurosci. 19 1341–1347. 10.1038/nn.4372

Source: PubMed

3
Abonnere