Pathophysiology, diagnosis, and treatment of radiation necrosis in the brain

Shin-Ichi Miyatake, Noasuke Nonoguchi, Motomasa Furuse, Erina Yoritsune, Tomo Miyata, Shinji Kawabata, Toshihiko Kuroiwa, Shin-Ichi Miyatake, Noasuke Nonoguchi, Motomasa Furuse, Erina Yoritsune, Tomo Miyata, Shinji Kawabata, Toshihiko Kuroiwa

Abstract

New radiation modalities have made it possible to prolong the survival of individuals with malignant brain tumors, but symptomatic radiation necrosis becomes a serious problem that can negatively affect a patient's quality of life through severe and lifelong effects. Here we review the relevant literature and introduce our original concept of the pathophysiology of brain radiation necrosis following the treatment of brain, head, and neck tumors. Regarding the pathophysiology of radiation necrosis, we introduce two major hypotheses: glial cell damage or vascular damage. For the differential diagnosis of radiation necrosis and tumor recurrence, we focus on the role of positron emission tomography. Finally, in accord with our hypothesis regarding the pathophysiology, we describe the promising effects of the anti-vascular endothelial growth factor antibody bevacizumab on symptomatic radiation necrosis in the brain.

Conflict of interest statement

Conflicts of Interest Disclosure

There is no conflict of interest to disclose for any of the authors.

Figures

Fig. 1.
Fig. 1.
The pathophysiology of brain radiation necrosis: our hypothesis. A: Vascular damage around the irradiated tumor tissue causes tissue ischemia. This hypoxia induces hGLUT5-positive microglia to express hypoxia inducible factor-1 alpha (HIF-1α) around the necrotic core. B: Under HIF-1α regulation, vascular endothelial growth factor (VEGF) is expressed in reactive astrocytes, causing leaky and fragile angiogenesis. C: CXCL12/CXCR4 signaling is also regulated by HIF-1α. D: CXCL12-expressing reactive astrocytes might draw CXCR4-expressing macrophages and lymphocytes by chemotaxis into the perinecrotic area. E: These accumulated hGLUT5-positive microglia producing NF-κB and pro-inflammatory cytokines seem to aggravate radiation necrosis. This figure was taken from our recent publication (Reference 42) with the permission of the publisher. CXCL12: C-X-C motif chemokine 12, CXCR4: C-X-C chemokine receptor type 4, hGLUT5: human glucose transporter 5, IL: interleukin, NF-κB: nuclear factor-kappa B, TNF: tumor necrosis factor.
Fig. 2.
Fig. 2.
Hypoxia inducible factor-1 alpha (HIF-1α) immunohistochemistry of radiation necrosis. A, B: The results of HIF-1α immunohistochemistry on the radiation necrosis in a patient with recurrent glioblastoma multiforme (GBM) who was treated by re-irradiation with boron neutron capture therapy (BNCT). The (A) intact brain area and (B) peri-necrotic area are shown. C, D: HIF-1α immunohistochemistry in patients with radiation necrosis from GBM and metastatic brain tumors, respectively. The former was treated with proton beam radiation and X-ray treatment as an initial treatment, while the latter was treated with repetitive BNCT at the recurrence. Int: intact brain, Ne: necrotic center, Pe: peri-necrotic area. The original objective magnification is ×40.
Fig. 3.
Fig. 3.
Surgical specimen of radiation necrosis derived from a metastatic brain tumor caused by stereotactic radiosurgery (SRS). Hematoxylin and Eosin staining shows marked angiogenesis (indicated by white arrows) with perilesional edema. Anti-vascular endothelial growth factor (VEGF) immunohistochemistry shows the abundant expression of VEGF in the perinecrotic area. The VEGF-producing cells seemed to be reactive astrocytes.
Fig. 4.
Fig. 4.
A representative case of radiation necrosis treated with bevacizumab. The original disease was a metastatic brain tumor from lung cancer. The metastasis was treated with SRS. One year after the SRS, marked enhancement (A) and perilesional edema (B) were recognized on magnetic resonance imaging (MRI). At the time of the MRI, the patient could not walk by himself. After three cycles of bevacizumab treatment 5 mg/kg biweekly, an MRI showed a marked decrease of the edema (C) and he could walk again. Unfortunately, 3 months after the bevacizumab treatment, MRI showed aggravation of the edema (D) with clinical symptom deterioration. Due to financial problems, the patient could not undergo a re-challenge of bevacizumab treatment. A: Gd-enhanced T1-weighted image. B–D: Fluid-attenuated inversion recovery images. SRS: stereotactic radiosurgery.

References

    1. Blonigen BJ, Steinmetz RD, Levin L, Lamba MA, Warnick RE, Breneman JC: Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 77: 996– 1001, 2010.
    1. Minniti G, Clarke E, Lanzetta G, Osti MF, Trasimeni G, Bozzao A, Romano A, Enrici RM: Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis. Radiat Oncol 6: 48, 2011.
    1. Minniti G, D'Angelillo RM, Scaringi C, Trodella LE, Clarke E, Matteucci P, Osti MF, Ramella S, Enrici RM, Trodella L: Fractionated stereotactic radiosurgery for patients with brain metastases. J Neurooncol 117: 295– 301, 2014.
    1. Telera S, Fabi A, Pace A, Vidiri A, Anelli V, Carapella CM, Marucci L, Crispo F, Sperduti I, Pompili A: Radionecrosis induced by stereotactic radiosurgery of brain metastases: results of surgery and outcome of disease. J Neurooncol 113: 313– 325, 2013.
    1. Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ: Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9: 453– 461, 2008.
    1. Kumar AJ, Leeds NE, Fuller GN, Van Tassel P, Maor MH, Sawaya RE, Levin VA: Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 217: 377– 384, 2000.
    1. Marks JE, Baglan RJ, Prassad SC, Blank WF: Cerebral radionecrosis: incidence and risk in relation to dose, time, fractionation and volume. Int J Radiat Oncol Biol Phys 7: 243– 252, 1981.
    1. Ruben JD, Dally M, Bailey M, Smith R, McLean CA, Fedele P: Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int J Radiat Oncol Biol Phys 65: 499– 508, 2006.
    1. Shaw E, Arusell R, Scheithauer B, O'Fallon J, O'Neill B, Dinapoli R, Nelson D, Earle J, Jones C, Cascino T, Nichols D, Ivnik R, Hellman R, Curran W, Abrams R: Prospective randomized trial of low- versus high-dose radiation therapy in adults with supratentorial low-grade glioma: initial report of a North Central Cancer Treatment Group/Radiation Therapy Oncology Group/Eastern Cooperative Oncology Group study. J Clin Oncol 20: 2267– 2276, 2002.
    1. Soffietti R, Sciolla R, Giordana MT, Vasario E, Schiffer D: Delayed adverse effects after irradiation of gliomas: clinicopathological analysis. J Neurooncol 3: 187– 192, 1985.
    1. Zeng QS, Li CF, Zhang K, Liu H, Kang XS, Zhen JH: Multivoxel 3D proton MR spectroscopy in the distinction of recurrent glioma from radiation injury. J Neurooncol 84: 63– 69, 2007.
    1. Brandes AA, Franceschi E, Tosoni A, Blatt V, Pession A, Tallini G, Bertorelle R, Bartolini S, Calbucci F, Andreoli A, Frezza G, Leonardi M, Spagnolli F, Ermani M: MGMT promoter methylation status can predict the incidence and outcome of pseudo-progression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol 26: 2192– 2197, 2008.
    1. Chamberlain MC, Glantz MJ, Chalmers L, Van Horn A, Sloan AE: Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma. J Neurooncol 82: 81– 83, 2007.
    1. de Wit MC, de Bruin HG, Eijkenboom W, Sillevis Smitt PA, van den Bent MJ: Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression. Neurology 63: 535– 537, 2004.
    1. Lee AW, Kwong DL, Leung SF, Tung SY, Sze WM, Sham JS, Teo PM, Leung TW, Wu PM, Chappell R, Peters LJ, Fowler JF: Factors affecting risk of symptomatic temporal lobe necrosis: significance of fractional dose and treatment time. Int J Radiat Oncol Biol Phys 53: 75– 85, 2002.
    1. Shaw E, Scott C, Souhami L, Dinapoli R, Kline R, Loeffler J, Farnan N: Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05. Int J Radiat Oncol Biol Phys 47: 291– 298, 2000.
    1. Sheline GE, Wara WM, Smith V: Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol Phys 6: 1215– 1228, 1980.
    1. Graeb DA, Steinbok P, Robertson WD: Transient early computed tomographic changes mimicking tumor progression after brain tumor irradiation. Radiology 144: 813– 817, 1982.
    1. Belka C, Budach W, Kortmann RD, Bamberg M: Radiation induced CNS toxicity—molecular and cellular mechanisms. Br J Cancer 85: 1233– 1239, 2001.
    1. Li YQ, Ballinger JR, Nordal RA, Su ZF, Wong CS: Hypoxia in radiation-induced blood-spinal cord barrier breakdown. Cancer Res 61: 3348– 3354, 2001.
    1. Monje ML, Mizumatsu S, Fike JR, Palmer TD: Irradiation induces neural precursor-cell dysfunction. Nat Med 8: 955– 962, 2002.
    1. Monje ML, Toda H, Palmer TD: Inflammatory blockade restores adult hippocampal neurogenesis. Science 302: 1760– 1765, 2003.
    1. Tofilon PJ, Fike JR: The radioresponse of the central nervous system: a dynamic process. Radiat Res 153: 357– 370, 2000.
    1. Zhao W, Robbins ME: Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Curr Med Chem 16: 130– 143, 2009.
    1. Miyatake S, Furuse M, Kawabata S, Maruyama T, Kumabe T, Kuroiwa T, Ono K: Bevacizumab treatment of symptomatic pseudoprogression after boron neutron capture therapy for recurrent malignant gliomas. Report of 2 cases. Neuro-oncology 15: 650– 655, 2013.
    1. Burger PC, Mahley MS, Dudka L, Vogel FS: The morphologic effects of radiation administered therapeutically for intracranial gliomas: a postmortem study of 25 cases. Cancer 44: 1256– 1272, 1979.
    1. Gaensler EH, Dillon WP, Edwards MS, Larson DA, Rosenau W, Wilson CB: Radiation-induced telangiectasia in the brain simulates cryptic vascular malformations at MR imaging. Radiology 193: 629– 636, 1994.
    1. Poussaint TY, Siffert J, Barnes PD, Pomeroy SL, Goumnerova LC, Anthony DC, Sallan SE, Tarbell NJ: Hemorrhagic vasculopathy after treatment of central nervous system neoplasia in childhood: diagnosis and follow-up. AJNR Am J Neuroradiol 16: 693– 699, 1995.
    1. Rabin BM, Meyer JR, Berlin JW, Marymount MH, Palka PS, Russell EJ: Radiation-induced changes in the central nervous system and head and neck. Radiographics 16: 1055– 1072, 1996.
    1. van der Kogel AJ: Radiation-induced damage in the central nervous system: an interpretation of target cell responses. Br J Cancer Suppl 7: 207– 217, 1986.
    1. Burger P, Boyko O: The pathology of central nervous system radiation injury , in Gutin PH, Leibel SA, Sheline GE. (eds): Radiation Injury to the Nervous System . New York : Raven Press , 1991 , pp 191 – 208
    1. Ansari R, Gaber MW, Wang B, Pattillo CB, Miyamoto C, Kiani MF: Anti-TNFA (TNF-alpha) treatment abrogates radiation-induced changes in vacular density and tissue oxygenation. Radiat Res 167: 80– 86, 2007.
    1. Kishi K, Petersen S, Petersen C, Hunter N, Mason K, Masferrer JL, Tofilon PJ, Milas L: Preferential enhancement of tumor radioresponse by a cyclooxygenase-2 inhibitor. Cancer Res 60: 1326– 1331, 2000.
    1. Yoshii Y: Pathological review of late cerebral radionecrosis. Brain Tumor Pathol 25: 51– 58, 2008.
    1. van der Maazen RW, Kleiboer BJ, Verhagen I, van der Kogel AJ: Irradiation in vitro discriminates between different O-2A progenitor cell subpopulations in the perinatal central nervous system of rats. Radiat Res 128: 64– 72, 1991.
    1. van der Maazen RW, Kleiboer BJ, Verhagen I, van der Kogel AJ: Repair capacity of adult rat glial progenitor cells determined by an in vitro clonogenic assay after in vitro or in vivo fractionated irradiation. Int J Radiat Biol 63: 661– 666, 1993.
    1. Fike JR, Cann CE, Turowski K, Higgins RJ, Chan AS, Phillips TL, Davis RL: Radiation dose response of normal brain. Int J Radiat Oncol Biol Phys 14: 63– 70, 1988.
    1. Allen NJ, Barres BA: Neuroscience: Glia—more than just brain glue. Nature 457: 675– 677, 2009.
    1. Calvo W, Hopewell JW, Reinhold HS, Yeung TK: Time- and dose-related changes in the white matter of the rat brain after single doses of X rays. Br J Radiol 61: 1043– 1052, 1988.
    1. Lyubimova N, Hopewell JW: Experimental evidence to support the hypothesis that damage to vascular endothelium plays the primary role in the development of late radiation-induced CNS injury. Br J Radiol 77: 488– 492, 2004.
    1. Reinhold HS, Calvo W, Hopewell JW, van der Berg AP: Development of blood vessel-related radiation damage in the fimbria of the central nervous system. Int J Radiat Oncol Biol Phys 18: 37– 42, 1990.
    1. Yoritsune E, Furuse M, Kuwabara H, Miyata T, Nonoguchi N, Kawabata S, Hayasaki H, Kuroiwa T, Ono K, Shibayama Y, Miyatake S: Inflammation as well as angiogenesis may participate in the pathophysiology of brain radiation necrosis. J Radiat Res 55: 803– 811, 2014.
    1. Liang Z, Brooks J, Willard M, Liang K, Yoon Y, Kang S, Shim H: CXCR4/CXCL12 axis promotes VEGF-mediated tumor angiogenesis through Akt signaling pathway. Biochem Biophys Res Commun 359: 716– 722, 2007.
    1. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ: The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399: 271– 275, 1999.
    1. Nonoguchi N, Miyatake S, Fukumoto M, Furuse M, Hiramatsu R, Kawabata S, Kuroiwa T, Tsuji M, Fukumoto M, Ono K: The distribution of vascular endothelial growth factor-producing cells in clinical radiation necrosis of the brain: pathological consideration of their potential roles. J Neurooncol 105: 423– 431, 2011.
    1. Mayhan WG: Cellular mechanisms by which tumor necrosis factor-alpha produces disruption of the blood-brain barrier. Brain Res 927: 144– 152, 2002.
    1. Wilson CM, Gaber MW, Sabek OM, Zawaski JA, Merchant TE: Radiation-induced astrogliosis and blood-brain barrier damage can be abrogated using anti-TNF treatment. Int J Radiat Oncol Biol Phys 74: 934– 941, 2009.
    1. Dobbie MS, Hurst RD, Klein NJ, Surtees RA: Upregulation of intercellular adhesion molecule-1 expression on human endothelial cells by tumour necrosis factor-alpha in an in vitro model of the blood-brain barrier. Brain Res 830: 330– 336, 1999.
    1. Gaber MW, Sabek OM, Fukatsu K, Wilcox HG, Kiani MF, Merchant TE: Differences in ICAM-1 and TNF-alpha expression between large single fraction and fractionated irradiation in mouse brain. Int J Radiat Biol 79: 359– 366, 2003.
    1. Meistrell ME, Botchkina GI, Wang H, Di Santo E, Cockroft KM, Bloom O, Vishnubhakat JM, Ghezzi P, Tracey KJ: Tumor necrosis factor is a brain damaging cytokine in cerebral ischemia. Shock 8: 341– 348, 1997.
    1. Nordal RA, Wong CS: Intercellular adhesion molecule-1 and blood-spinal cord barrier disruption in central nervous system radiation injury. J Neuropathol Exp Neurol 63: 474– 483, 2004.
    1. Sumagin R, Sarelius IH: TNF-alpha activation of arterioles and venules alters distribution and levels of ICAM-1 and affects leukocyte-endothelial cell interactions. Am J Physiol Heart Circ Physiol 291: H2116– H2125, 2006.
    1. Miyata T, Toho T, Nonoguchi N, Furuse M, Kuwabara H, Yoritsune E, Kawabata S, Kuroiwa T, Miyatake S: The roles of platelet-derived growth factors and their receptors in brain radiation necrosis. Radiat Oncol 9: 51, 2014.
    1. Miyatake S: [Diagnosis and treatment of symptomatic radiation necrosis in the brain]. No Shinkei Geka 41: 197– 208, 2013.
    1. Mullins ME, Barest GD, Schaefer PW, Hochberg FH, Gonzalez RG, Lev MH: Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis. AJNR Am J Neuroradiol 26: 1967– 1972, 2005.
    1. Asao C, Korogi Y, Kitajima M, Hirai T, Baba Y, Makino K, Kochi M, Morishita S, Yamashita Y: Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol 26: 1455– 1460, 2005.
    1. Biousse V, Newman NJ, Hunter SB, Hudgins PA: Diffusion weighted imaging in radiation necrosis. J Neurol Neurosurg Psychiatr 74: 382– 384, 2003.
    1. Hein PA, Eskey CJ, Dunn JF, Hug EB: Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol 25: 201– 209, 2004.
    1. Dowling C, Bollen AW, Noworolski SM, McDermott MW, Barbaro NM, Day MR, Henry RG, Chang SM, Dillon WP, Nelson SJ, Vigneron DB: Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR Am J Neuroradiol 22: 604– 612, 2001.
    1. Plotkin M, Eisenacher J, Bruhn H, Wurm R, Michel R, Stockhammer F, Feussner A, Dudeck O, Wust P, Felix R, Amthauer H: 123I-IMT SPECT and 1H MR-spectroscopy at 3.0 T in the differential diagnosis of recurrent or residual gliomas: a comparative study. J Neurooncol 70: 49– 58, 2004.
    1. Rock JP, Scarpace L, Hearshen D, Gutierrez J, Fisher JL, Rosenblum M, Mikkelsen T: Associations among magnetic resonance spectroscopy, apparent diffusion coefficients, and image-guided histopathology with special attention to radiation necrosis. Neurosurgery 54: 1111– 1117; discussion 1117–1119, 2004.
    1. Chong VF, Rumpel H, Aw YS, Ho GL, Fan YF, Chua EJ: Temporal lobe necrosis following radiation therapy for nasopharyngeal carcinoma: 1H MR spectroscopic findings. Int J Radiat Oncol Biol Phys 45: 699– 705, 1999.
    1. Rabinov JD, Lee PL, Barker FG, Louis DN, Harsh GR, Cosgrove GR, Chiocca EA, Thornton AF, Loeffler JS, Henson JW, Gonzalez RG: In vivo 3-T MR spectroscopy in the distinction of recurrent glioma versus radiation effects: initial experience. Radiology 225: 871– 879, 2002.
    1. Schlemmer HP, Bachert P, Henze M, Buslei R, Herfarth KK, Debus J, van Kaick G: Differentiation of radiation necrosis from tumor progression using proton magnetic resonance spectroscopy. Neuroradiology 44: 216– 222, 2002.
    1. Schlemmer HP, Bachert P, Herfarth KK, Zuna I, Debus J, van Kaick G: Proton MR spectroscopic evaluation of suspicious brain lesions after stereo-tactic radiotherapy. AJNR Am J Neuroradiol 22: 1316– 1324, 2001.
    1. Schultheiss TE, Kun LE, Ang KK, Stephens LC: Radiation response of the central nervous system. Int J Radiat Oncol Biol Phys 31: 1093– 1112, 1995.
    1. Sundgren PC, Fan X, Weybright P, Welsh RC, Carlos RC, Petrou M, McKeever PE, Chenevert TL: Differentiation of recurrent brain tumor versus radiation injury using diffusion tensor imaging in patients with new contrast-enhancing lesions. Magn Reson Imaging 24: 1131– 1142, 2006.
    1. Ando K, Ishikura R, Nagami Y, Morikawa T, Takada Y, Ikeda J, Nakao N, Matsumoto T, Arita N: [Usefulness of Cho/Cr ratio in proton MR spectroscopy for differentiating residual/recurrent glioma from nonneoplastic lesions]. Nihon Igaku Hoshasen Gakkai Zasshi 64: 121– 126, 2004.
    1. Aronen HJ, Perkiö J: Dynamic susceptibility contrast MRI of gliomas. Neuroimaging Clin N Am 12: 501– 523, 2002.
    1. Covarrubias DJ, Rosen BR, Lev MH: Dynamic magnetic resonance perfusion imaging of brain tumors. Oncologist 9: 528– 537, 2004.
    1. Ellika SK, Jain R, Patel SC, Scarpace L, Schultz LR, Rock JP, Mikkelsen T: Role of perfusion CT in glioma grading and comparison with conventional MR imaging features. AJNR Am J Neuroradiol 28: 1981– 1987, 2007.
    1. Sugahara T, Korogi Y, Tomiguchi S, Shigematsu Y, Ikushima I, Kira T, Liang L, Ushio Y, Takahashi M: Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol 21: 901– 909, 2000.
    1. Di Chiro G, Oldfield E, Wright DC, De Michele D, Katz DA, Patronas NJ, Doppman JL, Larson SM, Ito M, Kufta CV: Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies. AJR Am J Roentgenol 150: 189– 197, 1988.
    1. Doyle WK, Budinger TF, Valk PE, Levin VA, Gutin PH: Differentiation of cerebral radiation necrosis from tumor recurrence by [18F]FDG and 82Rb positron emission tomography. J Comput Assist Tomogr 11: 563– 570, 1987.
    1. Glantz MJ, Hoffman JM, Coleman RE, Friedman AH, Hanson MW, Burger PC, Herndon JE, Meisler WJ, Schold SC: Identification of early recurrence of primary central nervous system tumors by [18F] fluorodeoxyglucose positron emission tomography. Ann Neurol 29: 347– 355, 1991.
    1. Kim EE, Chung SK, Haynie TP, Kim CG, Cho BJ, Podoloff DA, Tilbury RS, Yang DJ, Yung WK, Moser RP: Differentiation of residual or recurrent tumors from post-treatment changes with F-18 FDG PET. Radiographics 12: 269– 279, 1992.
    1. Ogawa T, Kanno I, Shishido F, Inugami A, Higano S, Fujita H, Murakami M, Uemura K, Yasui N, Mineura K: Clinical value of PET with 18F-fluorodeoxyglucose and L-methyl-11C-methionine for diagnosis of recurrent brain tumor and radiation injury. Acta Radiol 32: 197– 202, 1991.
    1. Valk PE, Budinger TF, Levin VA, Silver P, Gutin PH, Doyle WK: PET of malignant cerebral tumors after interstitial brachytherapy. Demonstration of metabolic activity and correlation with clinical outcome. J Neurosurg 69: 830– 838, 1988.
    1. Gómez-Río M, Rodríguez-Fernández A, Ramos-Font C, López-Ramírez E, Llamas-Elvira JM: Diagnostic accuracy of 201Thallium-SPECT and 18F-FDG-PET in the clinical assessment of glioma recurrence. Eur J Nucl Med Mol Imaging 35: 966– 975, 2008.
    1. Kahn D, Follett KA, Bushnell DL, Nathan MA, Piper JG, Madsen M, Kirchner PT: Diagnosis of recurrent brain tumor: value of 201Tl SPECT vs 18F-fluorodeoxyglucose PET. AJR Am J Roentgenol 163: 1459– 1465, 1994.
    1. Olivero WC, Dulebohn SC, Lister JR: The use of PET in evaluating patients with primary brain tumours: is it useful? J Neurol Neurosurg Psychiatr 58: 250– 252, 1995.
    1. Ricci PE, Karis JP, Heiserman JE, Fram EK, Bice AN, Drayer BP: Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR Am J Neuroradiol 19: 407– 413, 1998.
    1. Stokkel M, Stevens H, Taphoorn M, Van Rijk P: Differentiation between recurrent brain tumour and post-radiation necrosis: the value of 201Tl SPET versus 18F-FDG PET using a dual-headed coincidence camera—a pilot study. Nucl Med Commun 20: 411– 417, 1999.
    1. Meller J, Sahlmann CO, Scheel AK: 18F-FDG PET and PET/CT in fever of unknown origin. J Nucl Med 48: 35– 45, 2007.
    1. Miyatake S, Kuroiwa T, Kajimoto Y, Miyashita M, Tanaka H, Tsuji M: Fluorescence of non-neoplastic, magnetic resonance imaging-enhancing tissue by 5-aminolevulinic acid: case report. Neurosurgery 61: E1101– E1103; discussion E1103–E1104, 2007.
    1. Wang SX, Boethius J, Ericson K: FDG-PET on irradiated brain tumor: ten years' summary. Acta Radiol 47: 85– 90, 2006.
    1. Hung GU, Tsai SC, Lin WY: Extraordinarily high F-18 FDG uptake caused by radiation necrosis in a patient with nasopharyngeal carcinoma. Clin Nucl Med 30: 558– 559, 2005.
    1. Ceyssens S, Van Laere K, de Groot T, Goffin J, Bormans G, Mortelmans L: [11C]methionine PET, histopathology, and survival in primary brain tumors and recurrence. AJNR Am J Neuroradiol 27: 1432– 1437, 2006.
    1. Tsuyuguchi N, Takami T, Sunada I, Iwai Y, Yamanaka K, Tanaka K, Nishikawa M, Ohata K, Torii K, Morino M, Nishio A, Hara M: Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery—in malignant glioma. Ann Nucl Med 18: 291– 296, 2004.
    1. Miyashita M, Miyatake S, Imahori Y, Yokoyama K, Kawabata S, Kajimoto Y, Shibata MA, Otsuki Y, Kirihata M, Ono K, Kuroiwa T: Evaluation of fluoride-labeled boronophenylalanine-PET imaging for the study of radiation effects in patients with glioblastomas. J Neurooncol 89: 239– 246, 2008.
    1. Miyatake S, Kawabata S, Nonoguchi N, Yokoyama K, Kuroiwa T, Matsui H, Ono K: Pseudoprogression in boron neutron capture therapy for malignant gliomas and meningiomas. Neuro-oncology 11: 430– 436, 2009.
    1. Furuse M, Nonoguchi N, Kawabata S, Yoritsune E, Takahashi M, Inomata T, Kuroiwa T, Miyatake S: Bevacizumab treatment for symptomatic radiation necrosis diagnosed by amino acid PET. Jpn J Clin Oncol 43: 337– 341, 2013.
    1. Mou YG, Sai K, Wang ZN, Zhang XH, Lu YC, Wei DN, Yang QY, Chen ZP: Surgical management of radiation-induced temporal lobe necrosis in patients with nasopharyngeal carcinoma: report of 14 cases. Head Neck 33: 1493– 1500, 2011.
    1. Drappatz J, Schiff D, Kesari S, Norden AD, Wen PY: Medical management of brain tumor patients. Neurol Clin 25: 1035– 1071, ix, 2007.
    1. Shaw PJ, Bates D: Conservative treatment of delayed cerebral radiation necrosis. J Neurol Neurosurg Psychiatr 47: 1338– 1341, 1984.
    1. Glantz MJ, Burger PC, Friedman AH, Radtke RA, Massey EW, Schold SC: Treatment of radiation-induced nervous system injury with heparin and warfarin. Neurology 44: 2020– 2027, 1994.
    1. Bui QC, Lieber M, Withers HR, Corson K, van Rijnsoever M, Elsaleh H: The efficacy of hyperbaric oxygen therapy in the treatment of radiation-induced late side effects. Int J Radiat Oncol Biol Phys 60: 871– 878, 2004.
    1. Chuba PJ, Aronin P, Bhambhani K, Eichenhorn M, Zamarano L, Cianci P, Muhlbauer M, Porter AT, Fontanesi J: Hyperbaric oxygen therapy for radiation-induced brain injury in children. Cancer 80: 2005– 2012, 1997.
    1. Kohshi K, Imada H, Nomoto S, Yamaguchi R, Abe H, Yamamoto H: Successful treatment of radiation-induced brain necrosis by hyperbaric oxygen therapy. J Neurol Sci 209: 115– 117, 2003.
    1. Ohguri T, Imada H, Kohshi K, Kakeda S, Ohnari N, Morioka T, Nakano K, Konda N, Korogi Y: Effect of prophylactic hyperbaric oxygen treatment for radiation-induced brain injury after stereotactic radiosurgery of brain metastases. Int J Radiat Oncol Biol Phys 67: 248– 255, 2007.
    1. Gonzalez J, Kumar AJ, Conrad CA, Levin VA: Effect of bevacizumab on radiation necrosis of the brain. Int J Radiat Oncol Biol Phys 67: 323– 326, 2007.
    1. Arratibel-Echarren I, Albright K, Dalmau J, Rosenfeld MR: Use of Bevacizumab for neurological complications during initial treatment of malignant gliomas. Neurologia 26: 74– 80, 2011.
    1. Boothe D, Young R, Yamada Y, Prager A, Chan T, Beal K: Bevacizumab as a treatment for radiation necrosis of brain metastases post stereotactic radio-surgery. Neuro-oncology 15: 1257– 1263, 2013.
    1. Furuse M, Kawabata S, Kuroiwa T, Miyatake S: Repeated treatments with bevacizumab for recurrent radiation necrosis in patients with malignant brain tumors: a report of 2 cases. J Neurooncol 102: 471– 475, 2011.
    1. Matuschek C, Bölke E, Nawatny J, Hoffmann TK, Peiper M, Orth K, Gerber PA, Rusnak E, Lammering G, Budach W: Bevacizumab as a treatment option for radiation-induced cerebral necrosis. Strahlenther Onkol 187: 135– 139, 2011.
    1. Torcuator R, Zuniga R, Mohan YS, Rock J, Doyle T, Anderson J, Gutierrez J, Ryu S, Jain R, Rosenblum M, Mikkelsen T: Initial experience with bevacizumab treatment for biopsy confirmed cerebral radiation necrosis. J Neurooncol 94: 63– 68, 2009.
    1. Levin VA, Bidaut L, Hou P, Kumar AJ, Wefel JS, Bekele BN, Grewal J, Prabhu S, Loghin M, Gilbert MR, Jackson EF: Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys 79: 1487– 1495, 2011.
    1. Lubelski D, Abdullah KG, Weil RJ, Marko NF: Bevacizumab for radiation necrosis following treatment of high grade glioma: a systematic review of the literature. J Neurooncol 115: 317– 322, 2013.
    1. Gutin PH, Iwamoto FM, Beal K, Mohile NA, Karimi S, Hou BL, Lymberis S, Yamada Y, Chang J, Abrey LE: Safety and efficacy of bevacizumab with hypo-fractionated stereotactic irradiation for recurrent malignant gliomas. Int J Radiat Oncol Biol Phys 75: 156– 163, 2009.
    1. Niyazi M, Ganswindt U, Schwarz SB, Kreth FW, Tonn JC, Geisler J, la Fougère C, Ertl L, Linn J, Siefert A, Belka C: Irradiation and bevacizumab in high-grade glioma retreatment settings. Int J Radiat Oncol Biol Phys 82: 67– 76, 2012.
    1. Miyatake S, Kawabata S, Hiramatsu R, Furuse M, Kuroiwa T, Suzuki M: Boron neutron capture therapy with bevacizumab may prolong the survival of recurrent malignant glioma patients: four cases. Radiat Oncol 9: 6, 2014.

Source: PubMed

3
Abonnere