Feasibility of extreme dose escalation for glioblastoma multiforme using 4π radiotherapy

Dan Nguyen, Jean-Claude M Rwigema, Victoria Y Yu, Tania Kaprealian, Patrick Kupelian, Michael Selch, Percy Lee, Daniel A Low, Ke Sheng, Dan Nguyen, Jean-Claude M Rwigema, Victoria Y Yu, Tania Kaprealian, Patrick Kupelian, Michael Selch, Percy Lee, Daniel A Low, Ke Sheng

Abstract

Background: Glioblastoma multiforme (GBM) frequently recurs at the same location after radiotherapy. Further dose escalation using conventional methods is limited by normal tissue tolerance. 4π non-coplanar radiotherapy has recently emerged as a new potential method to deliver highly conformal radiation dose using the C-arm linacs. We aim to study the feasibility of very substantial GBM dose escalation while maintaining normal tissue tolerance using 4π.

Methods: 11 GBM patients previously treated with volumetric modulated arc therapy (VMAT/RapidArc) on the NovalisTx™ platform to a prescription dose of either 59.4 Gy or 60 Gy were included. All patients were replanned with 30 non-coplanar beams using a 4π radiotherapy platform, which inverse optimizes both beam angles and fluence maps. Four different prescriptions were used including original prescription dose and PTV (4πPTVPD), 100 Gy to the PTV and GTV (4πPTV100Gy), 100 Gy to the GTV only while maintaining prescription dose to the rest of the PTV (4πGTV100Gy), and a 5 mm margin expansion plan (4πPTVPD+5mm). OARs included in the study are the normal brain (brain - PTV), brainstem, chiasm, spinal cord, eyes, lenses, optical nerves, and cochleae.

Results: The 4π plans resulted in superior dose gradient indices, as indicated by >20% reduction in the R50, compared to the clinical plans. Among all of the 4π cases, when compared to the clinical plans, the maximum and mean doses were significantly reduced (p < 0.05) by a range of 47.01-98.82% and 51.87-99.47%, respectively, or unchanged (p > 0.05) for all of the non-brain OARs. Both the 4πPTVPD and 4π GTV100GYplans reduced the mean normal brain mean doses.

Conclusions: 4π non-coplanar radiotherapy substantially increases the dose gradient outside of the PTV and better spares critical organs. Dose escalation to 100 Gy to the GTV or additional margin expansion while meeting clinical critical organ dose constraints is feasible. 100 Gy to the PTV result in higher normal brain doses but may be tolerated when delivered in proportionally increased treatment fractions. Therefore, 4π non-coplanar radiotherapy on C-arm gantry may provide an accessible tool to improve the outcome of GBM radiotherapy through extreme dose escalation.

Figures

Figure 1
Figure 1
Typical beam patterns of 4π beams vs. VMAT beams.
Figure 2
Figure 2
Individual patient dosimetry comparisons between clinical VMAT plans and the various 4π plans.
Figure 3
Figure 3
Comparison of volumes between the clinical and 4π plans.
Figure 4
Figure 4
Dose wash of the clinical case and the various 4π plans for a single patient.
Figure 5
Figure 5
Cumulative dose volume histogram comparisons for a typical patient. (a) Dose volume histogram comparing the clinical plan to the 4πPTVPD plan and the 4πPTVPD+5mm plan. (b) Dose volume histogram comparing the clinical plan to the 4πPTV100Gy plan and the 4πGTV100Gy plan.

References

    1. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–466. doi: 10.1016/S1470-2045(09)70025-7.
    1. Wallner KE, Galicich JH, Krol G, Arbit E Malkin MG. Patterns of failure following treatment for glioblastoma multiforme and anaplastic J Radiat Oncol Biol Phys 1989, 16:1405–1409.
    1. Walker MD, Strike TA Sheline GE. An analysis of dose-effect relationship in the radiotherapy of malignant J Radiat Oncol Biol Phys 1979, 5:1725–1731.
    1. Chan JL, Lee SW, Fraass BA, Normolle DP, Greenberg HS, Junck LR, Gebarski SS, Sandler HM. Survival and Failure Patterns of High-Grade Gliomas After Three-Dimensional Conformal Radiotherapy. J Clin Oncol. 2002;20:1635–1642. doi: 10.1200/JCO.20.6.1635.
    1. Lee SW, Fraass BA, Marsh LH, Herbort K, Gebarski SS, Martel MK, Radany EH, Lichter AS, Sandler HM. Patterns of failure following high-dose 3-D conformal radiotherapy for high-grade astrocytomas: a quantitative dosimetric study. Int J Radiat Oncol Biol Phys. 1999;43:79–88. doi: 10.1016/S0360-3016(98)00266-1.
    1. Cardinale R, Won M, Choucair A, Gillin M, Chakravarti A, Schultz C, Souhami L, Chen A, Pham H, Mehta M. A phase II trial of accelerated radiotherapy using weekly stereotactic conformal boost for supratentorial glioblastoma multiforme: RTOG 0023. Int J Radiat Oncol Biol Phys. 2006;65:1422–1428. doi: 10.1016/j.ijrobp.2006.02.042.
    1. Chen C, Damek D, Gaspar LE, Waziri A, Lillehei K, Kleinschmidt-DeMasters BK, Robischon M, Stuhr K, Rusthoven KE, Kavanagh BD. Phase I Trial of Hypofractionated Intensity-Modulated Radiotherapy With Temozolomide Chemotherapy for Patients With Newly Diagnosed Glioblastoma Multiforme. Int J Radiat Oncol Biol Phys. 2011;81:1066–1074. doi: 10.1016/j.ijrobp.2010.07.021.
    1. Fitzek MM. Accelerated fractionated proton/photon irradiation to 90 cobalt gray equivalent for glioblastoma multiforme: Results of a phaseII prospective trial. J Neurosurg. 1999;91:251–260. doi: 10.3171/jns.1999.91.2.0251.
    1. Gutin PH, Prados MD, Phillips TL, Wara WM, Larson DA, Leibel SA, Sneed PK, Levin VA, Weaver KA, Silver P, Lamborn K, Lamb S, Ham B. External irradiation followed by an interstitial high activity iodine-125 implant “boost” in the initial treatment of malignant gliomas: NCOG study 6G-82-2. Int J Radiat Oncol Biol Phys. 1991;21:601–606. doi: 10.1016/0360-3016(91)90676-U.
    1. Prados MD, Gutin PH, Phillips TL, Wara WM, Sneed PK, Larson DA, Lamb SA, Ham B, Malec MK, Wilson CB. Interstitial brachytherapy for newly diagnosed patients with malignant gliomas: The UCSF experience. Int J Radiat Oncol Biol Phys. 1992;24:593–597. doi: 10.1016/0360-3016(92)90703-K.
    1. Sneed PK, Gutin PH, Larson DA, Malec MK, Phillips TL, Prados MD, Scharfen CO, Weaver KA, Wara WM . Patterns of recurrence of glioblastoma multiforme after external irradiation followed by implant boost. Int J Radiat Oncol Biol Phys. 1994;29:719–727. doi: 10.1016/0360-3016(94)90559-2.
    1. Dong P, Lee P, Ruan D, Long T, Romeijn E, Low DA, Kupelian P, Abraham J, Yang Y, Sheng K. 4π Noncoplanar Stereotactic Body Radiation Therapy for Centrally Located or Larger Lung Tumors. Int J Radiat Oncol Biol Phys. 2013;86:407–413. doi: 10.1016/j.ijrobp.2013.02.002.
    1. Dong P, Lee P, Ruan D, Long T, Romeijn E, Yang Y, Low D, Kupelian P, Sheng K. 4π Non-Coplanar Liver SBRT: A Novel Delivery Technique. Int J Radiat Oncol Biol Phys. 2013;85:1360–1366. doi: 10.1016/j.ijrobp.2012.09.028.
    1. Dong P, Nguyen D, Ruan D, King C, Long T, Romeijn E, Low D, Kupelian P, Steinberg ML, Yang Y, Sheng K. Feasibility of prostate robotic radiotherapy on conventional C-arm linacs. Pract Radiat Oncol. 2014;4:254–260. doi: 10.1016/j.prro.2013.10.009.
    1. Davidson MT, Masucci GL, Follwell M, Blake SJ, Xu W, Moseley DJ, Sanghera P, Wong CS, Perry J, Tsao M, Sahgal A. Single arc volumetric modulated arc therapy for complex brain gliomas: is there an advantage as compared to intensity modulated radiotherapy or by adding a partial arc? Technol Cancer Res Treat. 2012;11:211–220. doi: 10.7785/tcrt.2012.500289.
    1. Lawrence YR, Li XA, el Naqa I, Hahn CA, Marks LB, Merchant TE, Dicker AP. Radiation Dose–Volume Effects in the Brain. Int J Radiat Oncol Biol Phys. 2010;76:S20–S27. doi: 10.1016/j.ijrobp.2009.02.091.
    1. Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, Bentzen SM, Nam J, Deasy JO. Use of Normal Tissue Complication Probability Models in the Clinic. Int J Radiat Oncol. 2010;76:S10–S19. doi: 10.1016/j.ijrobp.2009.07.1754.
    1. Romeijn H, Ahuja R, Dempsey J, Kumar A. A Column Generation Approach to Radiation Therapy Treatment Planning Using Aperture Modulation. SIAM J Optim. 2005;15:838–862. doi: 10.1137/040606612.
    1. Kageji T, Mizobuchi Y, Nagahiro S, Nakagawa Y, Kumada H. Long-survivors of glioblatoma treated with boron neutron capture therapy (BNCT) Appl Radiat Isot. 2011;69:1800–1802. doi: 10.1016/j.apradiso.2011.03.021.
    1. Reese AS, Das SK, Curie C, Marks LB. Integral dose conservation in radiotherapy. Med Phys. 2009;36:734–740. doi: 10.1118/1.3070585.

Source: PubMed

3
Abonnere