Prevention of ventilator-associated pneumonia by noble metal coating of endotracheal tubes: a multi-center, randomized, double-blind study

Pierre Damas, Caroline Legrain, Bernard Lambermont, Nadia Dardenne, Julien Guntz, Grâce Kisoka, Pierre Demaret, Anne-Françoise Rousseau, Laurent Jadot, Sonia Piret, Didier Noirot, Axelle Bertrand, Anne-Françoise Donneau, Benoît Misset, Pierre Damas, Caroline Legrain, Bernard Lambermont, Nadia Dardenne, Julien Guntz, Grâce Kisoka, Pierre Demaret, Anne-Françoise Rousseau, Laurent Jadot, Sonia Piret, Didier Noirot, Axelle Bertrand, Anne-Françoise Donneau, Benoît Misset

Abstract

Background: Ventilator-associated pneumonia (VAP) causes increased mortality, prolonged hospital stay and increased healthcare costs. Prevention of VAP in intensive care units (ICUs) is currently based on several measures, and application of noble metal coating on medical devices has been shown to inhibit the bacterial adherence of microorganisms to the surface. The objective of this study was to evaluate the potential benefit of noble metal coating of endotracheal tubes for the prevention of VAP.

Methods: This was a multi-center, randomized, controlled, double-blind, prospective study including ventilated patients from nine ICUs from four hospital sites in Belgium. Patients were randomly intubated with identical appearing noble metal alloy (NMA) coated (NMA-coated group) or non-coated (control group) endotracheal tubes (ETT). Primary endpoint was the incidence of VAP. Secondary endpoints were the proportion of antibiotic days during ICU stay and tracheal colonization by pathogenic bacteria.

Results: In total, 323 patients were enrolled, 168 in the NMA-coated group and 155 in the control group. During ventilation, VAP occurred in 11 patients (6.5%) in the NMA-coated group and in 18 patients (11.6%) in the control group (p = 0.11). A higher delay in VAP occurrence was observed in the NMA-coated group compared with the control group by Cox proportional hazards regression analysis (HR 0.41, 95% CI 0.19-0.88, p = 0.02). The number of antibiotic days was 58.8% of the 1,928 ICU days in the NMA-coated group and 65.4% of the 1774 ICU days in the control group (p = 0.06). Regarding tracheal colonization, bacteria occurred in 38 of 126 patients in the NMA-coated group (30.2%) and in 37 of 109 patients in the control group (33.9%) (p = 0.57).

Conclusions: This study provides preliminary evidence to support the benefit of noble metal coating in the prevention of VAP. A confirmatory study in a larger population would be valuable.

Trial registration: Clinical trial number: NCT04242706 ( http://www.clinicaltrials.gov ).

Keywords: Antibiotic consumption, intubation; Endotracheal tube; Infection; Noble metal coating; Ventilator-associated pneumonia.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Flowchart of patients admitted in the participating intensive care units during the study. BIP Bactiguard Infection Protection; ETT endotracheal tube; Evac evacuation; NMA noble metal alloy
Fig. 2
Fig. 2
Cumulative rates of patients remaining free of a suspected ventilator-associated pneumonia and b confirmed ventilator-associated pneumonia using the Kaplan–Meier method

References

    1. Koenig SM, Truwit JD. Ventilator-associated pneumonia: diagnosis, treatment, and prevention. Clin Microbiol Rev. 2006;19(4):637–657. doi: 10.1128/CMR.00051-05.
    1. Kalanuria AA, Ziai W, Mirski M. Ventilator-associated pneumonia in the ICU. Crit Care. 2014;18(2):208. doi: 10.1186/cc13775.
    1. Chastre J, Fagon JY. Ventilator-associated pneumonia. Am J Respir Crit Care Med. 2002;165(7):867–903. doi: 10.1164/ajrccm.165.7.2105078.
    1. American Thoracic S, Infectious Diseases Society of A Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171(4):388–416. doi: 10.1164/rccm.200405-644ST.
    1. Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016;63(5):e61–e111. doi: 10.1093/cid/ciw353.
    1. Torres A, Niederman MS, Chastre J, Ewig S, Fernandez-Vandellos P, Hanberger H, et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociacion Latinoamericana del Torax (ALAT) Eur Respir J. 2017;50(3):1700582. doi: 10.1183/13993003.00582-2017.
    1. Klompas M. Oropharyngeal decontamination with antiseptics to prevent ventilator-associated pneumonia: rethinking the benefits of chlorhexidine. Semin Respir Crit Care Med. 2017;38(3):381–390. doi: 10.1055/s-0037-1602584.
    1. Fernandez JF, Levine SM, Restrepo MI. Technologic advances in endotracheal tubes for prevention of ventilator-associated pneumonia. Chest. 2012;142(1):231–238. doi: 10.1378/chest.11-2420.
    1. Kollef MH, Afessa B, Anzueto A, Veremakis C, Kerr KM, Margolis BD, et al. Silver-coated endotracheal tubes and incidence of ventilator-associated pneumonia: the NASCENT randomized trial. JAMA. 2008;300(7):805–813. doi: 10.1001/jama.300.7.805.
    1. Berra L, Kolobow T, Laquerriere P, Pitts B, Bramati S, Pohlmann J, et al. Internally coated endotracheal tubes with silver sulfadiazine in polyurethane to prevent bacterial colonization: a clinical trial. Intensive Care Med. 2008;34(6):1030–1037. doi: 10.1007/s00134-008-1100-1.
    1. Rello J, Kollef M, Diaz E, Sandiumenge A, del Castillo Y, Corbella X, et al. Reduced burden of bacterial airway colonization with a novel silver-coated endotracheal tube in a randomized multiple-center feasibility study. Crit Care Med. 2006;34(11):2766–2772. doi: 10.1097/01.CCM.0000242154.49632.B0.
    1. Thorarinsdottir HR, Kander T, Holmberg A, Petronis S, Klarin B. Biofilm formation on three different endotracheal tubes: a prospective clinical trial. Crit Care. 2020;24(1):382. doi: 10.1186/s13054-020-03092-1.
    1. Banaszek D, Inglis T, Ritchie L, Belanger L, Ailon T, Charest-Morin R, et al. Effectiveness of silver alloy-coated silicone urinary catheters in patients with acute traumatic cervical spinal cord injury: results of a quality improvement initiative. J Clin Neurosci. 2020;78:135–138. doi: 10.1016/j.jocn.2020.05.036.
    1. Chung PH, Wong CW, Lai CK, Siu HK, Tsang DN, Yeung KY, et al. A prospective interventional study to examine the effect of a silver alloy and hydrogel-coated catheter on the incidence of catheter-associated urinary tract infection. Hong Kong Med J. 2017;23(3):239–245.
    1. Karchmer TB, Giannetta ET, Muto CA, Strain BA, Farr BM. A randomized crossover study of silver-coated urinary catheters in hospitalized patients. Arch Intern Med. 2000;160(21):3294–3298. doi: 10.1001/archinte.160.21.3294.
    1. Lederer JW, Jarvis WR, Thomas L, Ritter J. Multicenter cohort study to assess the impact of a silver-alloy and hydrogel-coated urinary catheter on symptomatic catheter-associated urinary tract infections. J Wound Ostomy Continence Nurs. 2014;41(5):473–480. doi: 10.1097/WON.0000000000000056.
    1. Rupp ME, Fitzgerald T, Marion N, Helget V, Puumala S, Anderson JR, et al. Effect of silver-coated urinary catheters: efficacy, cost-effectiveness, and antimicrobial resistance. Am J Infect Control. 2004;32(8):445–450. doi: 10.1016/j.ajic.2004.05.002.
    1. Kai-Larsen Y, Grass S, Mody B, Upadhyay S, Trivedi HL, Pal DK, et al. Foley catheter with noble metal alloy coating for preventing catheter-associated urinary tract infections: a large, multi-center clinical trial. Antimicrob Resist Infect Control. 2021;10(1):40. doi: 10.1186/s13756-021-00907-w.
    1. Pugin J, Auckenthaler R, Mili N, Janssens JP, Lew PD, Suter PM. Diagnosis of ventilator-associated pneumonia by bacteriologic analysis of bronchoscopic and nonbronchoscopic “blind” bronchoalveolar lavage fluid. Am Rev Respir Dis. 1991;143(5 Pt 1):1121–1129. doi: 10.1164/ajrccm/143.5_Pt_1.1121.
    1. Klompas M. Complications of mechanical ventilation–the CDC’s new surveillance paradigm. N Engl J Med. 2013;368(16):1472–1475. doi: 10.1056/NEJMp1300633.
    1. Björling G, Johansson D, Bergström L, Jalal S, Kohn I, Frostell C, et al. Tolerability and performance of BIP endotracheal tubes with noble metal alloy coating—a randomized clinical evaluation study. BMC Anesthesiol. 2015;15:174. doi: 10.1186/s12871-015-0156-z.
    1. Papazian L, Klompas M, Luyt CE. Ventilator-associated pneumonia in adults: a narrative review. Intensive Care Med. 2020;46(5):888–906. doi: 10.1007/s00134-020-05980-0.
    1. Damas P, Frippiat F, Ancion A, Canivet JL, Lambermont B, Layios N, et al. Prevention of ventilator-associated pneumonia and ventilator-associated conditions: a randomized controlled trial with subglottic secretion suctioning. Crit Care Med. 2015;43(1):22–30. doi: 10.1097/CCM.0000000000000674.
    1. Lacherade JC, De Jonghe B, Guezennec P, Debbat K, Hayon J, Monsel A, et al. Intermittent subglottic secretion drainage and ventilator-associated pneumonia: a multicenter trial. Am J Respir Crit Care Med. 2010;182(7):910–917. doi: 10.1164/rccm.200906-0838OC.
    1. Jadot L, Huyghens L, De Jaeger A, Bourgeois M, Biarent D, Higuet A, et al. Impact of a VAP bundle in Belgian intensive care units. Ann Intensive Care. 2018;8(1):65. doi: 10.1186/s13613-018-0412-8.
    1. Grasselli G, Scaravilli V, Mangioni D, Scudeller L, Alagna L, Bartoletti M, et al. Hospital-acquired infections in critically ill patients with COVID-19. Chest. 2021 doi: 10.1016/j.chest.2021.04.002.

Source: PubMed

3
Abonnere