Reduction of exacerbations by the PDE4 inhibitor roflumilast--the importance of defining different subsets of patients with COPD

Stephen I Rennard, Peter M A Calverley, Udo M Goehring, Dirk Bredenbröker, Fernando J Martinez, Stephen I Rennard, Peter M A Calverley, Udo M Goehring, Dirk Bredenbröker, Fernando J Martinez

Abstract

Background: As chronic obstructive pulmonary disease (COPD) is a heterogeneous disease it is unlikely that all patients will benefit equally from a given therapy. Roflumilast, an oral, once-daily phosphodiesterase 4 inhibitor, has been shown to improve lung function in moderate and severe COPD but its effect on exacerbations in unselected populations was inconclusive. This led to the question of whether a responsive subset existed that could be investigated further.

Methods: The datasets of two previous replicate, randomized, double-blind, placebo-controlled, parallel-group studies (oral roflumilast 500 μg or placebo once daily for 52 weeks) that were inconclusive regarding exacerbations were combined in a post-hoc, pooled analysis to determine whether roflumilast reduced exacerbations in a more precisely defined patient subset.

Results: The pooled analysis included 2686 randomized patients. Roflumilast significantly decreased exacerbations by 14.3% compared with placebo (p = 0.026). Features associated with this reduction were: presence of chronic bronchitis with or without emphysema (26.2% decrease, p = 0.001), presence of cough (20.9% decrease, p = 0.006), presence of sputum (17.8% decrease, p = 0.03), and concurrent use of inhaled corticosteroids (ICS; 18.8% decrease, p = 0.014). The incidence of adverse events was similar with roflumilast and placebo (81.5% vs 80.1%), but more patients in the roflumilast group had events assessed as likely or definitely related to the study drug (21.5% vs 8.3%).

Conclusions: This post-hoc, pooled analysis showed that roflumilast reduced exacerbation frequency in a subset of COPD patients whose characteristics included chronic bronchitis with/without concurrent ICS. These observations aided the design of subsequent phase 3 studies that prospectively confirmed the reduction in exacerbations with roflumilast treatment.

Trials registration: ClinicalTrials.gov identifiers: NCT00076089 and NCT00430729.

Figures

Figure 1
Figure 1
Trial profiles of M2-111 and M2-112. Percentages are based on the number of randomized patients in a treatment group.
Figure 2
Figure 2
Rate ratios and 95% CIs for reduction in COPD exacerbations with roflumilast by patient subgroup. Error bars represent 95% CIs.
Figure 3
Figure 3
Differences and 95% CIs between roflumilast and placebo for increase in pre-bronchodilator FEV1 (L) by patient subgroup. Error bars represent 95% CIs.
Figure 4
Figure 4
Differences and 95% confidence intervals between roflumilast and placebo for changes in St George's Respiratory Questionnaire (SGRQ) total score by patient subgroup. Error bars represent 95% CIs.

References

    1. Chapman KR, Mannino DM, Soriano JB, Vermeire PA, Buist AS, Thun MJ, Connell C, Jemal A, Lee TA, Miravitlles M, Aldington S, Beasley R. Epidemiology and costs of chronic obstructive pulmonary disease. Eur Respir J. 2006;27:188–207. doi: 10.1183/09031936.06.00024505.
    1. Halbert RJ, Natoli JL, Gano A, Badamgarav E, Buist AS, Mannino DM. Global burden of COPD: systematic review and meta-analysis. Eur Respir J. 2006;28:523–532. doi: 10.1183/09031936.06.00124605.
    1. Pauwels RA, Rabe KF. Burden and clinical features of chronic obstructive pulmonary disease (COPD) Lancet. 2004;364:613–620. doi: 10.1016/S0140-6736(04)16855-4.
    1. Spencer S, Calverley PM, Burge PS, Jones PW. Impact of preventing exacerbations on deterioration of health status in COPD. Eur Respir J. 2004;23:698–702. doi: 10.1183/09031936.04.00121404.
    1. Soler-Cataluna JJ, Martinez-Garcia MA, Roman SP, Salcedo E, Navarro M, Ochando R. Severe acute exacerbations and mortality in patients with chronic obstructive pulmonary disease. Thorax. 2005;60:925–931. doi: 10.1136/thx.2005.040527.
    1. Gamble E, Grootendorst DC, Brightling CE, Troy S, Qiu Y, Zhu J, Parker D, Matin D, Majumdar S, Vignola AM, Kroegel C, Morell F, Hansel TT, Rennard SI, Compton C, Amit O, Tat T, Edelson J, Pavord ID, Rabe KF, Barnes NC, Jeffery PK. Antiinflammatory effects of the phosphodiesterase-4 inhibitor cilomilast (Ariflo) in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;168:976–982. doi: 10.1164/rccm.200212-1490OC.
    1. Grootendorst DC, Gauw SA, Verhoosel RM, Sterk PJ, Hospers JJ, Bredenbroker D, Bethke TD, Hiemstra PS, Rabe KF. Reduction in sputum neutrophil and eosinophil numbers by the PDE4 inhibitor roflumilast in patients with COPD. Thorax. 2007;62:1081–1087. doi: 10.1136/thx.2006.075937.
    1. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease (updated 2009) Bethesda: National Heart, Lung and Blood Institute; 2009.
    1. Rabe KF, Bateman ED, O'Donnell D, Witte S, Bredenbroker D, Bethke TD. Roflumilast - an oral anti-inflammatory treatment for chronic obstructive pulmonary disease: a randomised controlled trial. Lancet. 2005;366:563–571. doi: 10.1016/S0140-6736(05)67100-0.
    1. Calverley PM, Sanchez-Toril F, McIvor A, Teichmann P, Bredenbroeker D, Fabbri LM. Effect of 1-year treatment with roflumilast in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;176:154–161. doi: 10.1164/rccm.200610-1563OC.
    1. Rennard SI, Vestbo J. The many "small COPDs": COPD should be an orphan disease. Chest. 2008;134:623–627. doi: 10.1378/chest.07-3059.
    1. SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study)
    1. Regan EA, Hokanson JE, Murphy JR, Make B, Lynch DA, Beaty TH, Curran-Everett D, Silverman EK, Crapo JD. Genetic epidemiology of COPD (COPDGene) study design 2. COPD. 2010;7:32–43. doi: 10.3109/15412550903499522.
    1. Vestbo J, Anderson W, Coxson HO, Crim C, Dawber F, Edwards L, Hagan G, Knobil K, Lomas DA, MacNee W, Silverman EK, Tal-Singer R. Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE) Eur Respir J. 2008;31:869–873. doi: 10.1183/09031936.00111707.
    1. Calverley PM, Rabe KF, Goehring UM, Kristiansen S, Fabbri LM, Martinez FJ. Roflumilast in symptomatic chronic obstructive pulmonary disease: two randomised clinical trials. Lancet. 2009;374:685–694. doi: 10.1016/S0140-6736(09)61255-1.
    1. Soto FJ, Hanania NA. Selective phosphodiesterase-4 inhibitors in chronic obstructive lung disease. Curr Opin Pulm Med. 2005;11:129–134.
    1. Calverley P, Pauwels R, Vestbo J, Jones P, Pride N, Gulsvik A, Anderson J, Maden C. Combined salmeterol and fluticasone in the treatment of chronic obstructive pulmonary disease: a randomised controlled trial. Lancet. 2003;361:449–456. doi: 10.1016/S0140-6736(03)12459-2.
    1. Calverley PM, Boonsawat W, Cseke Z, Zhong N, Peterson S, Olsson H. Maintenance therapy with budesonide and formoterol in chronic obstructive pulmonary disease. Eur Respir J. 2003;22:912–919. doi: 10.1183/09031936.03.00027003.
    1. Ito K, Ito M, Elliott WM, Cosio B, Caramori G, Kon OM, Barczyk A, Hayashi S, Adcock IM, Hogg JC, Barnes PJ. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med. 2005;352:1967–1976. doi: 10.1056/NEJMoa041892.
    1. Seemungal TA, Donaldson GC, Paul EA, Bestall JC, Jeffries DJ, Wedzicha JA. Effect of exacerbation on quality of life in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998;157:1418–1422.
    1. Guerra S, Sherrill DL, Venker C, Ceccato CM, Halonen M, Martinez FD. Chronic bronchitis before age 50 years predicts incident airflow limitation and mortality risk. Thorax. 2009;64:894–900. doi: 10.1136/thx.2008.110619.
    1. Hebenstreit GF, Fellerer K, Fichte K, Fischer G, Geyer N, Meya U, Hernandez M, Schony W, Schratzer M, Soukop W. Rolipram in major depressive disorder: results of a double-blind comparative study with imipramine. Pharmacopsychiatry. 1989;22:156–160. doi: 10.1055/s-2007-1014599.
    1. Han MK, Agusti A, Calverley PM, Celli BR, Criner G, Curtis JL, Fabbri LM, Goldin JG, Jones PW, MacNee W, Make BJ, Rabe KF, Rennard SI, Sciurba FC, Silverman EK, Vestbo J, Washko GR, Wouters EF, Martinez FJ. Chronic obstructive pulmonary disease phenotypes: the future of COPD. Am J Respir Crit Care Med. 2010;182:598–604. doi: 10.1164/rccm.200912-1843CC.
    1. Calverley PM. COPD: what is the unmet need? Br J Pharmacol. 2008;155:487–493. doi: 10.1038/bjp.2008.362.

Source: PubMed

3
Abonnere