Outdoor Temperature Influences Cold Induced Thermogenesis in Humans

Jaël R Senn, Claudia I Maushart, Gani Gashi, Regina Michel, Murielle Lalive d'Epinay, Roland Vogt, Anton S Becker, Julian Müller, Miroslav Baláz, Christian Wolfrum, Irene A Burger, Matthias J Betz, Jaël R Senn, Claudia I Maushart, Gani Gashi, Regina Michel, Murielle Lalive d'Epinay, Roland Vogt, Anton S Becker, Julian Müller, Miroslav Baláz, Christian Wolfrum, Irene A Burger, Matthias J Betz

Abstract

Objective: Energy expenditure (EE) increases in response to cold exposure, which is called cold induced thermogenesis (CIT). Brown adipose tissue (BAT) has been shown to contribute significantly to CIT in human adults. BAT activity and CIT are acutely influenced by ambient temperature. In the present study, we investigated the long-term effect of seasonal temperature variation on human CIT. Materials and Methods: We measured CIT in 56 healthy volunteers by indirect calorimetry. CIT was determined as difference between EE during warm conditions (EEwarm) and after a defined cold stimulus (EEcold). We recorded skin temperatures at eleven anatomically predefined locations, including the supraclavicular region, which is adjacent to the main human BAT depot. We analyzed the relation of EE, CIT and skin temperatures to the daily minimum, maximum and mean outdoor temperature averaged over 7 or 30 days, respectively, prior to the corresponding study visit by linear regression. Results: We observed a significant inverse correlation between outdoor temperatures and EEcold and CIT, respectively, while EEwarm was not influenced. The daily maximum temperature averaged over 7 days correlated best with EEcold (R2 = 0.123, p = 0.008) and CIT (R2 = 0.200, p = 0.0005). The mean skin temperatures before and after cold exposure were not related to outdoor temperatures. However, the difference between supraclavicular and parasternal skin temperature after cold exposure was inversely related to the average maximum temperature during the preceding 7 days (R2 = 0.07575, p = 0.0221). Conclusion: CIT is significantly related to outdoor temperatures indicating dynamic adaption of thermogenesis and BAT activity to environmental stimuli in adult humans. Clinical Trial Registration: www.ClinicalTrials.gov, Identifier NCT02682706.

Keywords: brown adipose tissue; cold exposure; cold induced thermogenesis; energy expenditure; outdoor temperature; thermogenesis.

Figures

FIGURE 1
FIGURE 1
Average of maximum daily temperature and date of the respective study visit (marked by blue dots).
FIGURE 2
FIGURE 2
Effect of the average maximum outdoor temperature during the 7 days preceding the study visit on energy expenditure under warm (EEwarm) and cold (EEcold) condition and on cold induced thermogenesis (CIT). (A) Outdoor temperature [°C] and EEwarm [kcal/d] show no significant correlation. p = 0.1771, R2 = 0.033. (B) Inverse correlation between EEcold [kcal/d] and the average maximum temperature during 7 days. (C) CIT [kcal/d] (difference of energy expenditure during warm and cold condition) vs. the average maximum temperature [°C] during 7 days. p = 0.0005, R2 = 0.200.
FIGURE 3
FIGURE 3
The Difference in CIT compared between HighTemp study visit (average daily maximum temperature during the previous 7 days above the median of 19.5°C) and LowTemp study visit (outdoor temperatures below the median) shows a 68% reduction.
FIGURE 4
FIGURE 4
Mean skin temperature [°C] during warm condition (red dots) (p = 0.2562, R2 = 0.024) and in response to the acute cold stimulus (blue squares) (p = 0.674, R2 = 0.003) compared to the average of the daily maximum outdoor temperature over a period of 7 days prior to the corresponding study visit.

References

    1. Au-Yong I. T., Thorn N., Ganatra R., Perkins A. C., Symonds M. E. (2009). Brown adipose tissue and seasonal variation in humans. Diabetes Metab. Res. Rev. 58 2583–2587. 10.2337/db09-0833
    1. Bahler L., Deelen J. W., Hoekstra J. B., Holleman F., Verberne H. J. (2016). Seasonal influence on stimulated BAT activity in prospective trials: a retrospective analysis of BAT visualized on 18F-FDG PET-CTs and 123I-mIBG SPECT-CTs. J. Appl. Physiol. 120 1418–1423. 10.1152/japplphysiol.00008.2016
    1. Bakker L. E., Boon M. R., van der Linden R. A., Arias-Bouda L. P., van Klinken J. B., Smit F., et al. (2014). Brown adipose tissue volume in healthy lean south Asian adults compared with white Caucasians: a prospective, case-controlled observational study. Lancet Diabetes Endocrinol. 2 210–217. 10.1016/S2213-8587(13)70156-6
    1. Betz M. J., Slawik M., Lidell M. E., Osswald A., Heglind M., Nilsson D., et al. (2013). Presence of brown adipocytes in retroperitoneal fat from patients with benign adrenal tumors: relationship with outdoor temperature. J. Clin. Endocrinol. Metab. 98 4097–4104. 10.1210/jc.2012-3535
    1. Cannon B., Nedergaard J. (2004). Brown adipose tissue: function and physiological significance. Physiol. Rev. 84 277–359. 10.1152/physrev.00015.2003
    1. Chartoumpekis D. V., Habeos I. G., Ziros P. G., Psyrogiannis A. I., Kyriazopoulou V. E., Papavassiliou A. G. (2011). Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21. Mol. Med. 17 736–740. 10.2119/molmed.2011.00075
    1. Coker R. H., Weaver A. N., Coker M. S., Murphy C. J., Gunga H. C., Steinach M. (2017). Metabolic responses to the Yukon arctic ultra: longest and coldest in the world. Med. Sci. Sports Exerc. 49 357–362. 10.1249/MSS.0000000000001095
    1. Cypess A. M., Lehman S., Williams G., Tal I., Rodman D., Goldfine A. B., et al. (2009). Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360 1509–1517. 10.1056/NEJMoa0810780
    1. Fedorenko A., Lishko P. V., Kirichok Y. (2012). Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151 400–413. 10.1016/j.cell.2012.09.010
    1. Hanssen M. J., Broeders E., Samms R. J., Vosselman M. J., van der Lans A. A., Cheng C. C., et al. (2015). Serum FGF21 levels are associated with brown adipose tissue activity in humans. Sci. Rep. 5:10275. 10.1038/srep10275
    1. Jang C., Jalapu S., Thuzar M., Law P. W., Jeavons S., Barclay J. L., et al. (2014). Infrared thermography in the detection of brown adipose tissue in humans. Physiol. Rep. 2:e12167. 10.14814/phy2.12167
    1. Kim S., Krynyckyi B. R., Machac J., Kim C. K. (2008). Temporal relation between temperature change and FDG uptake in brown adipose tissue. Eur. J. Nucl. Med. Mol. Imaging 35 984–989. 10.1007/s00259-007-0670-4
    1. Lichtenbelt W., Kingma B., van der Lans A., Schellen L. (2014). Cold exposure–an approach to increasing energy expenditure in humans. Trends Endocrinol. Metab. 25 165–167. 10.1016/j.tem.2014.01.001
    1. Lidell M. E., Betz M. J., Enerback S. (2014). Brown adipose tissue and its therapeutic potential. J. Intern. Med. 276 364–377. 10.1111/joim.12255
    1. Oke T. R. (2017). Urban Climates, eds Mills G. M., Christen A., Voogt J. A. (Cambridge: Cambridge University Press; ). 10.1017/9781139016476
    1. Ouellet V., Routhier-Labadie A., Bellemare W., Lakhal-Chaieb L., Turcotte E., Carpentier A. C., et al. (2011). Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in humans. J. Clin. Endocrinol. Metab. 96 192–199. 10.1210/jc.2010-0989
    1. R-Core-Team (2017). R: A Language and Environment for Statistical Computing. 3.4, 1 Edn. Vienna: R Foundation for Statistical Computing.
    1. Rosenwald M., Perdikari A., Rulicke T., Wolfrum C. (2013). Bi-directional interconversion of brite and white adipocytes. Nat. Cell. Biol. 15 659–667. 10.1038/ncb2740
    1. Smith R. E., Roberts J. C. (1964). Thermogenesis of brown adipose tissue in cold-acclimated rats. Am. J. Physiol. 206 143–148. 10.1152/ajplegacy.1964.206.1.143
    1. van der Lans A. A., Wierts R., Vosselman M. J., Schrauwen P., Brans B., van Marken Lichtenbelt W. D. (2014). Cold-activated brown adipose tissue in human adults: methodological issues. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307 R103–R113. 10.1152/ajpregu.00021.2014
    1. van Marken Lichtenbelt W. D., Vanhommerig J. W., Smulders N. M., Drossaerts J. M., Kemerink G. J., Bouvy N. D., et al. (2009). Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360 1500–1508. 10.1056/NEJMoa0808718
    1. van Ooijen A. M., van Marken Lichtenbelt W. D., van Steenhoven A. A., Westerterp K. R. (2004). Seasonal changes in metabolic and temperature responses to cold air in humans. Physiol. Behav. 82 545–553. 10.1016/j.physbeh.2004.05.001
    1. Virtanen K. A., Lidell M. E., Orava J., Heglind M., Westergren R., Niemi T., et al. (2009). Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360 1518–1525. 10.1056/NEJMoa0808949
    1. Yoneshiro T., Aita S., Matsushita M., Kayahara T., Kameya T., Kawai Y., et al. (2013). Recruited brown adipose tissue as an antiobesity agent in humans. J. Clin. Invest. 123 3404–3408. 10.1172/JCI67803
    1. Yoneshiro T., Aita S., Matsushita M., Okamatsu-Ogura Y., Kameya T., Kawai Y., et al. (2011). Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans. Obesity 19 1755–1760. 10.1038/oby.2011.125
    1. Yoneshiro T., Matsushita M., Nakae S., Kameya T., Sugie H., Tanaka S., et al. (2016). Brown adipose tissue is involved in the seasonal variation of cold-induced thermogenesis in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol.. 10.1152/ajpregu.00057.2015 [Epub ahead of print].

Source: PubMed

3
Abonnere