Fluid therapy and outcome: a prospective observational study in 65 German intensive care units between 2010 and 2011

Christian Ertmer, Bernhard Zwißler, Hugo Van Aken, Michael Christ, Fabian Spöhr, Axel Schneider, Robert Deisz, Matthias Jacob, Christian Ertmer, Bernhard Zwißler, Hugo Van Aken, Michael Christ, Fabian Spöhr, Axel Schneider, Robert Deisz, Matthias Jacob

Abstract

Background: Outcome data on fluid therapy in critically ill patients from randomised controlled trials may be different from data obtained by observational studies under "real-life" conditions. We conducted this prospective, observational study to investigate current practice of fluid therapy (crystalloids and colloids) and associated outcomes in 65 German intensive care units (ICUs). In total, 4545 adult patients who underwent intravenous fluid therapy were included. The main outcome measures were 90-day mortality, ICU mortality and acute kidney injury (AKI). Data were analysed using logistic and Cox regression models, as appropriate.

Results: In the predominantly post-operative overall cohort, unadjusted 90-day mortality was 20.1%. Patients who also received colloids (54.6%) had a higher median Simplified Acute Physiology Score II [25 (interquartile range 11; 41) vs. 17 (7; 31)] and incidence of severe sepsis (10.2 vs. 7.4%) on admission compared to patients who received exclusively crystalloids (45.4%). 6% hydroxyethyl starch (HES 130/0.4) was the most common colloid (57.0%). Crude rates of 90-day mortality were higher for patients who received colloids (OR 1.845 [1.560; 2.181]). After adjustment for baseline variables, the HR was 1.666 [1.405; 1.976] and further decreased to indicate no associated risk (HR 1.003 [0.980; 1.027]) when it was adjusted for vasopressor use, severity of disease and transfusions. Similarly, the crude risk of AKI was higher in the colloid group (crude OR 3.056 [2.528; 3.694]), after adjustment for baseline variables OR 1.941 [1.573; 2.397], and after full adjustment OR 0.696 [0.629; 0.770]), the risk of AKI turned out to be reduced. The same was true for the subgroup of patients treated with 6% HES 130/0.4 (crude OR 1.931 [1.541; 2.419], adjusted for baseline variables OR 2.260 [1.730; 2.953] and fully adjusted OR 0.800 [0.704; 0.910]) as compared to crystalloids only.

Conclusions: The present analysis of mostly post-operative patients in routine clinical care did not reveal an independent negative effect of colloids (mostly 6% HES 130/0.4) on renal function or survival after multivariable adjustment. Signals towards a reduced risk in subgroup analyses deserve further study. Trial registration ClinicalTrials.gov Identifier: NCT01122277, registered May 11th, 2010.

Keywords: Acute kidney injury; Colloids; Critical illness; Crystalloids; Fluid therapy; Hydroxyethyl starch.

Figures

Fig. 1
Fig. 1
Patient flow
Fig. 2
Fig. 2
Day of first colloid infusion in study patients receiving colloids. This figure depicts the day of ICU stay on which the patients receiving colloids were infused the first dose of colloids

References

    1. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–1377. doi: 10.1056/NEJMoa010307.
    1. The ProCESS Investigators A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370(18):1683–1693. doi: 10.1056/NEJMoa1401602.
    1. Reinhart K, Perner A, Sprung CL, Jaeschke R, Schortgen F, Johan Groeneveld AB, et al. Consensus statement of the ESICM task force on colloid volume therapy in critically ill patients. Intensive Care Med. 2012;38(3):368–383. doi: 10.1007/s00134-012-2472-9.
    1. Zacharowski K, Aken H, Marx G, Jacob M, Schaffartzik W, Zenz M, et al. Comments on Reinhart et al.: Consensus statement of the ESICM task force on colloid volume therapy in critically ill patients. Intensive Care Med. 2012;38(9):1556–1557. doi: 10.1007/s00134-012-2639-4.
    1. Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358(2):125–139. doi: 10.1056/NEJMoa070716.
    1. Guidet B, Martinet O, Boulain T, Philippart F, Poussel JF, Maizel J, et al. Assessment of hemodynamic efficacy and safety of 6% hydroxyethylstarch 130/0.4 vs. 0.9% NaCl fluid replacement in patients with severe sepsis: The CRYSTMAS study. Crit Care. 2012;16(R94):1–10.
    1. Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367(20):1901–1911. doi: 10.1056/NEJMoa1209759.
    1. Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Aneman A, et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med. 2012;367(2):124–134. doi: 10.1056/NEJMoa1204242.
    1. Shum HP, Lee FMH, Chan KC, Yan WW. Interaction between fluid balance and disease severity on patient outcome in the critically ill. J Crit Care. 2011;26(6):613–619. doi: 10.1016/j.jcrc.2011.02.008.
    1. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign. Crit Care Med. 2013;41(2):580–637. doi: 10.1097/CCM.0b013e31827e83af.
    1. Chappell D, Jacob M. Twisting and ignoring facts on hydroxyethyl starch is not very helpful. Scand J Trauma Resusc Emerg Med. 2013;21(85):1–3.
    1. Hartog CS, Natanson C, Sun J, Klein HG, Reinhart K. Concerns over use of hydroxyethyl starch solutions. BMJ. 2014;349:g5981. doi: 10.1136/bmj.g5981.
    1. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8(4):R204–R212. doi: 10.1186/cc2872.
    1. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–829. doi: 10.1097/00003246-198510000-00009.
    1. Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270(24):2957–2963. doi: 10.1001/jama.1993.03510240069035.
    1. National Kidney Foundation K/DOQI Clinical practice guidelines for chronic kidney disease: evaluation, classification and stratification. Am J Kidney Dis. 2002;39:S1–S266.
    1. Muckart DJ, Bhagwanjee S. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care. 1992;20(6):864–874. doi: 10.1097/00003246-199206000-00025.
    1. Brown SM, Lanspa MJ, Jones JP, Kuttler KG, Li Y, Carlson R, et al. Survival after shock requiring high-dose vasopressor therapy. Chest. 2013;143(3):664–671. doi: 10.1378/chest.12-1106.
    1. Asai T. Confidence in statistical analysis. Br J Anaesth. 2002;89(6):807–810. doi: 10.1093/bja/aef271.
    1. Engel C, Brunkhorst FM, Bone H-G, Brunkhorst R, Gerlach H, Grond S, et al. Epidemiology of sepsis in Germany: results from a national prospective multicenter study. Intensive Care Med. 2007;33(4):606–618. doi: 10.1007/s00134-006-0517-7.
    1. Vincent J-L, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA. 2009;302(21):2323–2329. doi: 10.1001/jama.2009.1754.
    1. Vincent J-L, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34(2):344–353. doi: 10.1097/01.CCM.0000194725.48928.3A.
    1. Retter A, Wyncoll D, Pearse R, Carson D, McKechnie S, Stanworth S, et al. Guidelines on the management of anaemia and red cell transfusion in adult critically ill patients. Br J Haematol. 2013;160(4):445–464. doi: 10.1111/bjh.12143.
    1. Sakr Y, Payen D, Reinhart K, Sipmann FS, Zavala E, Bewley J, et al. Effects of hydroxyethyl starch administration on renal function in critically ill patients. Br J Anaesth. 2007;98(2):216–224. doi: 10.1093/bja/ael333.
    1. Annane D, Siami S, Jaber S, Martin C, Elatrous S, Declère AD, et al. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock. The CRISTAL randomized trial. J Am Med Assoc. 2013;310:1809–1817. doi: 10.1001/jama.2013.280502.
    1. Coriat P, Guidet B, de Hert S, Kochs E, Kozek S, van Aken H. Counter statement to open letter to the Executive Director of the European Medicines Agency concerning the licensing of hydroxyethyl starch solutions for fluid resuscitation. Br J Anaesth. 2014;113(1):194–195. doi: 10.1093/bja/aeu217.
    1. Schortgen F, Lacherade JC, Bruneel F, Cattaneo I, Hemery F, Lemaire F, Brochard L. Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: a multicentre randomised study. Lancet. 2001;357(9260):911–916. doi: 10.1016/S0140-6736(00)04211-2.
    1. Martin C, Jacob M, Vicaut E, Guidet B, Van Aken H, Kurz A. Effect of waxy maize-derived hydroxyethyl starch 130/0.4 on renal function in surgical patients. Anesthesiology. 2013;118(2):387–394. doi: 10.1097/ALN.0b013e31827e5569.
    1. Qureshi SH, Rizvi SI, Patel NN, Murphy GJ. Meta-analysis of colloids versus crystalloids in critically ill, trauma and surgical patients. Br J Surg. 2016;103(1):14–26. doi: 10.1002/bjs.9943.
    1. Raiman M, Mitchell CG, Biccard BM, Rodseth RN. Comparison of hydroxyethyl starch colloids with crystalloids for surgical patients: a systematic review and meta-analysis. Eur J Anaesthesiol. 2016;33(1):42–48. doi: 10.1097/EJA.0000000000000328.
    1. Cecconi M, Hofer C, Teboul J-L, Pettila V, Wilkman E, Molnar Z, et al. Fluid challenges in intensive care: the FENICE study: a global inception cohort study. Intensive Care Med. 2015;41(9):1529–1537. doi: 10.1007/s00134-015-3850-x.
    1. Fewtrell MS, Kennedy K, Singhal A, Martin RM, Ness A, Hadders-Algra M, et al. How much loss to follow-up is acceptable in long-term randomised trials and prospective studies? Arch Dis Child. 2008;93(6):458–461. doi: 10.1136/adc.2007.127316.

Source: PubMed

3
Abonnere