Skeletal and Respiratory Muscle Dysfunctions in Pulmonary Arterial Hypertension

Marianne Riou, Mégane Pizzimenti, Irina Enache, Anne Charloux, Mathieu Canuet, Emmanuel Andres, Samy Talha, Alain Meyer, Bernard Geny, Marianne Riou, Mégane Pizzimenti, Irina Enache, Anne Charloux, Mathieu Canuet, Emmanuel Andres, Samy Talha, Alain Meyer, Bernard Geny

Abstract

Pulmonary arterial hypertension (PAH) is a rare disease, which leads to the progressive loss and remodeling of the pulmonary vessels, right heart failure, and death. Different clinical presentations can be responsible for such a bad prognosis disease and the underlying mechanisms still need to be further examined. Importantly, skeletal and respiratory muscle abnormalities largely contribute to the decreased quality of life and exercise intolerance observed in patients with PAH. At the systemic level, impaired oxygen supply through reduced cardiac output and respiratory muscle dysfunctions, which potentially result in hypoxemia, is associated with altered muscles vascularization, inflammation, enhanced catabolic pathways, and impaired oxygen use through mitochondrial dysfunctions that are likely participate in PAH-related myopathy. Sharing new insights into the pathological mechanisms of PAH might help stimulate specific research areas, improving the treatment and quality of life of PAH patients. Indeed, many of these muscular impairments are reversible, strongly supporting the development of effective preventive and/or therapeutic approaches, including mitochondrial protection and exercise training.

Keywords: Pulmonary arterial hypertension; catabolism; exercise; mitochondria; oxygen supply; respiratory muscles; skeletal muscles.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Mitochondrial respiratory chain complexes (Modified from [17]).
Figure 2
Figure 2
Mechanisms likely participating in pulmonary arterial hypertension-related skeletal muscle dysfunction.
Figure 3
Figure 3
Mechanisms likely participating in pulmonary arterial hypertension-related mitochondrial dysfunctions in muscles.

References

    1. Humbert M., Guignabert C., Bonnet S., Dorfmuller P., Klinger J.R., Nicolls M.R., Olschewski A.J., Pullamsetti S.S., Schermuly R.T., Stenmark K.R., et al. Pathology and pathobiology of pulmonary hypertension: State of the art and research perspectives. Eur. Respir. J. 2019;53:1801887. doi: 10.1183/13993003.01887-2018.
    1. Simonneau G., Montani D., Celermajer D.S., Denton C.P., Gatzoulis M.A., Krowka M., Williams P.G., Souza R. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur. Respir. J. 2019;53:1801913. doi: 10.1183/13993003.01913-2018.
    1. Galie N., Humbert M., Vachiery J.-L., Gibbs S., Lang I., Torbicki A., Simonneau G., Peacock A., Vonk Noordegraaf A., Beghetti M., et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT) Eur. Respir. J. 2015;46:903–975.
    1. Amsallem M., Sternbach J.M., Adigopula S., Kobayashi Y., Vu T.A., Zamanian R., Liang D., Dhillon G., Schnittger I., McConnell M.V., et al. Addressing the Controversy of Estimating Pulmonary Arterial Pressure by Echocardiography. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr. 2016;29:93–102. doi: 10.1016/j.echo.2015.11.001.
    1. Kovacs G., Herve P., Barbera J.A., Chaouat A., Chemla D., Condliffe R., Garcia G., Grunig E., Howard L., Humbert M., et al. An official European Respiratory Society statement: Pulmonary haemodynamics during exercise. Eur. Respir. J. 2017;50:1700578. doi: 10.1183/13993003.00578-2017.
    1. Geenen L.W., Baggen V.J.M., Kauling R.M., Koudstaal T., Boomars K.A., Boersma E., Roos-Hesselink J.W., van den Bosch A.E. The Prognostic Value of Soluble ST2 in Adults with Pulmonary Hypertension. J. Clin. Med. 2019;8:1517. doi: 10.3390/jcm8101517.
    1. Nickel N.P., Yuan K., Dorfmuller P., Provencher S., Lai Y.-C., Bonnet S., Austin E.D., Koch C.D., Morris A., Perros F., et al. Beyond the Lungs: Systemic Manifestations of Pulmonary Arterial Hypertension. Am. J. Respir. Crit. Care Med. 2019;201:148–157. doi: 10.1164/rccm.201903-0656CI.
    1. Spiekerkoetter E., Goncharova E.A., Guignabert C., Stenmark K., Kwapiszewska G., Rabinovitch M., Voelkel N., Bogaard H.J., Graham B., Pullamsetti S.S., et al. Hot topics in the mechanisms of pulmonary arterial hypertension disease: Cancer-like pathobiology, the role of the adventitia, systemic involvement, and right ventricular failure. Pulm. Circ. 2019;9:1–15. doi: 10.1177/2045894019889775.
    1. Bauer R., Dehnert C., Schoene P., Filusch A., Bartsch P., Borst M.M., Katus H.A., Meyer F.J. Skeletal muscle dysfunction in patients with idiopathic pulmonary arterial hypertension. Respir. Med. 2007;101:2366–2369. doi: 10.1016/j.rmed.2007.06.014.
    1. Batt J., Ahmed S.S., Correa J., Bain A., Granton J. Skeletal muscle dysfunction in idiopathic pulmonary arterial hypertension. Am. J. Respir. Cell Mol. Biol. 2014;50:74–86. doi: 10.1165/rcmb.2012-0506OC.
    1. Meyer F.J., Lossnitzer D., Kristen A.V., Schoene A.M., Kubler W., Katus H.A., Borst M.M. Respiratory muscle dysfunction in idiopathic pulmonary arterial hypertension. Eur. Respir. J. 2005;25:125–130. doi: 10.1183/09031936.04.00095804.
    1. Kabitz H.-J., Schwoerer A., Bremer H.-C., Sonntag F., Walterspacher S., Walker D., Schaefer V., Ehlken N., Staehler G., Halank M., et al. Impairment of respiratory muscle function in pulmonary hypertension. Clin. Sci. Lond. Engl. 1979. 2008;114:165–171. doi: 10.1042/CS20070238.
    1. Manders E., Rain S., Bogaard H.-J., Handoko M.L., Stienen G.J.M., Vonk-Noordegraaf A., Ottenheijm C.A.C., de Man F.S. The striated muscles in pulmonary arterial hypertension: Adaptations beyond the right ventricle. Eur. Respir. J. 2015;46:832–842. doi: 10.1183/13993003.02052-2014.
    1. Marra A.M., Arcopinto M., Bossone E., Ehlken N., Cittadini A., Grunig E. Pulmonary arterial hypertension-related myopathy: An overview of current data and future perspectives. Nutr. Metab. Cardiovasc. Dis. NMCD. 2015;25:131–139. doi: 10.1016/j.numecd.2014.10.005.
    1. Grunig E., Ehlken N., Ghofrani A., Staehler G., Meyer F.J., Juenger J., Opitz C.F., Klose H., Wilkens H., Rosenkranz S., et al. Effect of exercise and respiratory training on clinical progression and survival in patients with severe chronic pulmonary hypertension. Respir. Int. Rev. Thorac. Dis. 2011;81:394–401. doi: 10.1159/000322475.
    1. Mereles D., Ehlken N., Kreuscher S., Ghofrani S., Hoeper M.M., Halank M., Meyer F.J., Karger G., Buss J., Juenger J., et al. Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension. Circulation. 2006;114:1482–1489. doi: 10.1161/CIRCULATIONAHA.106.618397.
    1. Pizzimenti M., Riou M., Charles A.-L., Talha S., Meyer A., Andres E., Chakfe N., Lejay A., Geny B. The Rise of Mitochondria in Peripheral Arterial Disease Physiopathology: Experimental and Clinical Data. J. Clin. Med. 2019;8:2125. doi: 10.3390/jcm8122125.
    1. Jansson E., Sylven C. Creatine kinase MB and citrate synthase in type I and type II muscle fibres in trained and untrained men. Eur. J. Appl. Physiol. 1985;54:207–209. doi: 10.1007/BF02335931.
    1. Stump C.S., Henriksen E.J., Wei Y., Sowers J.R. The metabolic syndrome: Role of skeletal muscle metabolism. Ann. Med. 2006;38:389–402. doi: 10.1080/07853890600888413.
    1. Aaron E.A., Seow K.C., Johnson B.D., Dempsey J.A. Oxygen cost of exercise hyperpnea: Implications for performance. J. Appl. Physiol. Bethesda Md 1985. 1992;72:1818–1825. doi: 10.1152/jappl.1992.72.5.1818.
    1. DeFronzo R.A., Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care. 2009;32 Suppl 2:S157–S163. doi: 10.2337/dc09-S302.
    1. Pedersen L., Idorn M., Olofsson G.H., Lauenborg B., Nookaew I., Hansen R.H., Johannesen H.H., Becker J.C., Pedersen K.S., Dethlefsen C., et al. Voluntary Running Suppresses Tumor Growth through Epinephrine- and IL-6-Dependent NK Cell Mobilization and Redistribution. Cell Metab. 2016;23:554–562. doi: 10.1016/j.cmet.2016.01.011.
    1. Moon H.Y., Becke A., Berron D., Becker B., Sah N., Benoni G., Janke E., Lubejko S.T., Greig N.H., Mattison J.A., et al. Running-Induced Systemic Cathepsin B Secretion Is Associated with Memory Function. Cell Metab. 2016;24:332–340. doi: 10.1016/j.cmet.2016.05.025.
    1. Agudelo L.Z., Femenia T., Orhan F., Porsmyr-Palmertz M., Goiny M., Martinez-Redondo V., Correia J.C., Izadi M., Bhat M., Schuppe-Koistinen I., et al. Skeletal muscle PGC-1alpha1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell. 2014;159:33–45. doi: 10.1016/j.cell.2014.07.051.
    1. Rantanen T., Harris T., Leveille S.G., Visser M., Foley D., Masaki K., Guralnik J.M. Muscle strength and body mass index as long-term predictors of mortality in initially healthy men. J. Gerontol. A. Biol. Sci. Med. Sci. 2000;55:M168–M173. doi: 10.1093/gerona/55.3.M168.
    1. Myers J., Prakash M., Froelicher V., Do D., Partington S., Atwood J.E. Exercise capacity and mortality among men referred for exercise testing. N. Engl. J. Med. 2002;346:793–801. doi: 10.1056/NEJMoa011858.
    1. Cooper R., Kuh D., Hardy R. Objectively measured physical capability levels and mortality: Systematic review and meta-analysis. BMJ. 2010;341:c4467. doi: 10.1136/bmj.c4467.
    1. Zoll J., Sanchez H., N’Guessan B., Ribera F., Lampert E., Bigard X., Serrurier B., Fortin D., Geny B., Veksler V., et al. Physical activity changes the regulation of mitochondrial respiration in human skeletal muscle. J. Physiol. 2002;543:191–200. doi: 10.1113/jphysiol.2002.019661.
    1. Balaban R.S., Nemoto S., Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120:483–495. doi: 10.1016/j.cell.2005.02.001.
    1. Murphy M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009;417:1–13. doi: 10.1042/BJ20081386.
    1. Reczek C.R., Chandel N.S. ROS-dependent signal transduction. Curr. Opin. Cell Biol. 2015;33:8–13. doi: 10.1016/j.ceb.2014.09.010.
    1. Turrens J.F. Mitochondrial formation of reactive oxygen species. J. Physiol. 2003;552:335–344. doi: 10.1113/jphysiol.2003.049478.
    1. Vescovo G., Ceconi C., Bernocchi P., Ferrari R., Carraro U., Ambrosio G.B., Libera L.D. Skeletal muscle myosin heavy chain expression in rats with monocrotaline-induced cardiac hypertrophy and failure. Relation to blood flow and degree of muscle atrophy. Cardiovasc. Res. 1998;39:233–241. doi: 10.1016/S0008-6363(98)00041-8.
    1. de Man F.S., van Hees H.W.H., Handoko M.L., Niessen H.W., Schalij I., Humbert M., Dorfmuller P., Mercier O., Bogaard H.-J., Postmus P.E., et al. Diaphragm muscle fiber weakness in pulmonary hypertension. Am. J. Respir. Crit. Care Med. 2011;183:1411–1418. doi: 10.1164/rccm.201003-0354OC.
    1. Wust R.C.I., Myers D.S., Stones R., Benoist D., Robinson P.A., Boyle J.P., Peers C., White E., Rossiter H.B. Regional skeletal muscle remodeling and mitochondrial dysfunction in right ventricular heart failure. Am. J. Physiol. Heart Circ. Physiol. 2012;302:H402–H411. doi: 10.1152/ajpheart.00653.2011.
    1. Enache I., Charles A.-L., Bouitbir J., Favret F., Zoll J., Metzger D., Oswald-Mammosser M., Geny B., Charloux A. Skeletal muscle mitochondrial dysfunction precedes right ventricular impairment in experimental pulmonary hypertension. Mol. Cell. Biochem. 2013;373:161–170. doi: 10.1007/s11010-012-1485-6.
    1. Potus F., Malenfant S., Graydon C., Mainguy V., Tremblay E., Breuils-Bonnet S., Ribeiro F., Porlier A., Maltais F., Bonnet S., et al. Impaired angiogenesis and peripheral muscle microcirculation loss contribute to exercise intolerance in pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2014;190:318–328. doi: 10.1164/rccm.201402-0383OC.
    1. Moreira-Goncalves D., Padrao A.I., Ferreira R., Justino J., Nogueira-Ferreira R., Neuparth M.J., Vitorino R., Fonseca H., Silva A.F., Duarte J.A., et al. Signaling pathways underlying skeletal muscle wasting in experimental pulmonary arterial hypertension. Biochim. Biophys. Acta. 2015;1852:2722–2731. doi: 10.1016/j.bbadis.2015.10.002.
    1. Mainguy V., Maltais F., Saey D., Gagnon P., Martel S., Simon M., Provencher S. Peripheral muscle dysfunction in idiopathic pulmonary arterial hypertension. Thorax. 2010;65:113–117. doi: 10.1136/thx.2009.117168.
    1. Dimopoulos S., Tzanis G., Manetos C., Tasoulis A., Mpouchla A., Tseliou E., Vasileiadis I., Diakos N., Terrovitis J., Nanas S. Peripheral muscle microcirculatory alterations in patients with pulmonary arterial hypertension: A pilot study. Respir. Care. 2013;58:2134–2141. doi: 10.4187/respcare.02113.
    1. Breda A.P., Pereira de Albuquerque A.L., Jardim C., Morinaga L.K., Suesada M.M., Fernandes C.J.C., Dias B., Lourenco R.B., Salge J.M., Souza R. Skeletal muscle abnormalities in pulmonary arterial hypertension. PLoS ONE. 2014;9:e114101. doi: 10.1371/journal.pone.0114101.
    1. Malenfant S., Potus F., Mainguy V., Leblanc E., Malenfant M., Ribeiro F., Saey D., Maltais F., Bonnet S., Provencher S. Impaired Skeletal Muscle Oxygenation and Exercise Tolerance in Pulmonary Hypertension. Med. Sci. Sports Exerc. 2015;47:2273–2282. doi: 10.1249/MSS.0000000000000696.
    1. Manders E., Ruiter G., Bogaard H.-J., Stienen G.J.M., Vonk-Noordegraaf A., de Man F.S., Ottenheijm C.A.C. Quadriceps muscle fibre dysfunction in patients with pulmonary arterial hypertension. Eur. Respir. J. 2015;45:1737–1740. doi: 10.1183/09031936.00205114.
    1. Malenfant S., Potus F., Fournier F., Breuils-Bonnet S., Pflieger A., Bourassa S., Tremblay E., Nehme B., Droit A., Bonnet S., et al. Skeletal muscle proteomic signature and metabolic impairment in pulmonary hypertension. J. Mol. Med. Berl. Ger. 2015;93:573–584. doi: 10.1007/s00109-014-1244-0.
    1. Sithamparanathan S., Rocha M.C., Parikh J.D., Rygiel K.A., Falkous G., Grady J.P., Hollingsworth K.G., Trenell M.I., Taylor R.W., Turnbull D.M., et al. Skeletal muscle mitochondrial oxidative phosphorylation function in idiopathic pulmonary arterial hypertension: In vivo and in vitro study. Pulm. Circ. 2018;8 doi: 10.1177/2045894018768290.
    1. Sandri M. Signaling in muscle atrophy and hypertrophy. Physiol. Bethesda Md. 2008;23:160–170. doi: 10.1152/physiol.00041.2007.
    1. Lecker S.H., Solomon V., Mitch W.E., Goldberg A.L. Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states. J. Nutr. 1999;129:227S–237S. doi: 10.1093/jn/129.1.227S.
    1. Pagan J., Seto T., Pagano M., Cittadini A. Role of the ubiquitin proteasome system in the heart. Circ. Res. 2013;112:1046–1058. doi: 10.1161/CIRCRESAHA.112.300521.
    1. Dorfmuller P., Perros F., Balabanian K., Humbert M. Inflammation in pulmonary arterial hypertension. Eur. Respir. J. 2003;22:358–363. doi: 10.1183/09031936.03.00038903.
    1. Reid M.B., Lannergren J., Westerblad H. Respiratory and limb muscle weakness induced by tumor necrosis factor-alpha: Involvement of muscle myofilaments. Am. J. Respir. Crit. Care Med. 2002;166:479–484. doi: 10.1164/rccm.2202005.
    1. Hassoun P.M., Mouthon L., Barbera J.A., Eddahibi S., Flores S.C., Grimminger F., Jones P.L., Maitland M.L., Michelakis E.D., Morrell N.W., et al. Inflammation, growth factors, and pulmonary vascular remodeling. J. Am. Coll. Cardiol. 2009;54:S10–S19. doi: 10.1016/j.jacc.2009.04.006.
    1. Tomasetti M., Nocchi L., Staffolani S., Manzella N., Amati M., Goodwin J., Kluckova K., Nguyen M., Strafella E., Bajzikova M., et al. MicroRNA-126 suppresses mesothelioma malignancy by targeting IRS1 and interfering with the mitochondrial function. Antioxid. Redox Signal. 2014;21:2109–2125. doi: 10.1089/ars.2013.5215.
    1. Barbosa P.B., Ferreira E.M.V., Arakaki J.S.O., Takara L.S., Moura J., Nascimento R.B., Nery L.E., Neder J.A. Kinetics of skeletal muscle O2 delivery and utilization at the onset of heavy-intensity exercise in pulmonary arterial hypertension. Eur. J. Appl. Physiol. 2011;111:1851–1861. doi: 10.1007/s00421-010-1799-6.
    1. Michelakis E.D., Gurtu V., Webster L., Barnes G., Watson G., Howard L., Cupitt J., Paterson I., Thompson R.B., Chow K., et al. Inhibition of pyruvate dehydrogenase kinase improves pulmonary arterial hypertension in genetically susceptible patients. Sci. Transl. Med. 2017;9:eaao4583. doi: 10.1126/scitranslmed.aao4583.
    1. Manders E., de Man F.S., Handoko M.L., Westerhof N., van Hees H.W.H., Stienen G.J.M., Vonk-Noordegraaf A., Ottenheijm C.A.C. Diaphragm weakness in pulmonary arterial hypertension: Role of sarcomeric dysfunction. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012;303:L1070–L1078. doi: 10.1152/ajplung.00135.2012.
    1. Himori K., Abe M., Tatebayashi D., Lee J., Westerblad H., Lanner J.T., Yamada T. Superoxide dismutase/catalase mimetic EUK-134 prevents diaphragm muscle weakness in monocrotalin-induced pulmonary hypertension. PLoS ONE. 2017;12:e0169146. doi: 10.1371/journal.pone.0169146.
    1. Naeije R. Breathing more with weaker respiratory muscles in pulmonary arterial hypertension. Eur. Respir. J. 2005;25:6–8. doi: 10.1183/09031936.04.00121004.
    1. Laveneziana P., Humbert M., Godinas L., Joureau B., Malrin R., Straus C., Jais X., Sitbon O., Simonneau G., Similowski T., et al. Inspiratory muscle function, dynamic hyperinflation and exertional dyspnoea in pulmonary arterial hypertension. Eur. Respir. J. 2015;45:1495–1498. doi: 10.1183/09031936.00153214.
    1. Sun X.G., Hansen J.E., Oudiz R.J., Wasserman K. Exercise pathophysiology in patients with primary pulmonary hypertension. Circulation. 2001;104:429–435. doi: 10.1161/hc2901.093198.
    1. Kabitz H.-J., Bremer H.-C., Schwoerer A., Sonntag F., Walterspacher S., Walker D.J., Ehlken N., Staehler G., Windisch W., Grunig E. The combination of exercise and respiratory training improves respiratory muscle function in pulmonary hypertension. Lung. 2014;192:321–328. doi: 10.1007/s00408-013-9542-9.
    1. Gonzalez-Saiz L., Fiuza-Luces C., Sanchis-Gomar F., Santos-Lozano A., Quezada-Loaiza C.A., Flox-Camacho A., Munguia-Izquierdo D., Ara I., Santalla A., Moran M., et al. Benefits of skeletal-muscle exercise training in pulmonary arterial hypertension: The WHOLEi+12 trial. Int. J. Cardiol. 2017;231:277–283. doi: 10.1016/j.ijcard.2016.12.026.
    1. de Man F.S., Handoko M.L., Groepenhoff H., van ’t Hul A.J., Abbink J., Koppers R.J.H., Grotjohan H.P., Twisk J.W.R., Bogaard H.-J., Boonstra A., et al. Effects of exercise training in patients with idiopathic pulmonary arterial hypertension. Eur. Respir. J. 2009;34:669–675. doi: 10.1183/09031936.00027909.
    1. Mainguy V., Maltais F., Saey D., Gagnon P., Martel S., Simon M., Provencher S. Effects of a rehabilitation program on skeletal muscle function in idiopathic pulmonary arterial hypertension. J. Cardiopulm. Rehabil. Prev. 2010;30:319–323. doi: 10.1097/HCR.0b013e3181d6f962.
    1. Hambrecht R., Fiehn E., Weigl C., Gielen S., Hamann C., Kaiser R., Yu J., Adams V., Niebauer J., Schuler G. Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation. 1998;98:2709–2715. doi: 10.1161/01.CIR.98.24.2709.
    1. Petersen A.M.W., Pedersen B.K. The anti-inflammatory effect of exercise. J. Appl. Physiol. Bethesda Md 1985. 2005;98:1154–1162. doi: 10.1152/japplphysiol.00164.2004.
    1. Daussin F.N., Zoll J., Dufour S.P., Ponsot E., Lonsdorfer-Wolf E., Doutreleau S., Mettauer B., Piquard F., Geny B., Richard R. Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: Relationship to aerobic performance improvements in sedentary subjects. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008;295:R264–R272. doi: 10.1152/ajpregu.00875.2007.
    1. Grunig E., Eichstaedt C., Barbera J.-A., Benjamin N., Blanco I., Bossone E., Cittadini A., Coghlan G., Corris P., D’Alto M., et al. ERS statement on exercise training and rehabilitation in patients with severe chronic pulmonary hypertension. Eur. Respir. J. 2019;53:1800332. doi: 10.1183/13993003.00332-2018.
    1. Becker-Grunig T., Klose H., Ehlken N., Lichtblau M., Nagel C., Fischer C., Gorenflo M., Tiede H., Schranz D., Hager A., et al. Efficacy of exercise training in pulmonary arterial hypertension associated with congenital heart disease. Int. J. Cardiol. 2013;168:375–381. doi: 10.1016/j.ijcard.2012.09.036.
    1. Grunig E., Lichtblau M., Ehlken N., Ghofrani H.A., Reichenberger F., Staehler G., Halank M., Fischer C., Seyfarth H.-J., Klose H., et al. Safety and efficacy of exercise training in various forms of pulmonary hypertension. Eur. Respir. J. 2012;40:84–92. doi: 10.1183/09031936.00123711.
    1. Nagel C., Prange F., Guth S., Herb J., Ehlken N., Fischer C., Reichenberger F., Rosenkranz S., Seyfarth H.-J., Mayer E., et al. Exercise training improves exercise capacity and quality of life in patients with inoperable or residual chronic thromboembolic pulmonary hypertension. PLoS ONE. 2012;7:e41603. doi: 10.1371/journal.pone.0041603.
    1. Chan L., Chin L.M.K., Kennedy M., Woolstenhulme J.G., Nathan S.D., Weinstein A.A., Connors G., Weir N.A., Drinkard B., Lamberti J., et al. Benefits of intensive treadmill exercise training on cardiorespiratory function and quality of life in patients with pulmonary hypertension. Chest. 2013;143:333–343. doi: 10.1378/chest.12-0993.
    1. Weinstein A.A., Chin L.M.K., Keyser R.E., Kennedy M., Nathan S.D., Woolstenhulme J.G., Connors G., Chan L. Effect of aerobic exercise training on fatigue and physical activity in patients with pulmonary arterial hypertension. Respir. Med. 2013;107:778–784. doi: 10.1016/j.rmed.2013.02.006.
    1. Fox B.D., Kassirer M., Weiss I., Raviv Y., Peled N., Shitrit D., Kramer M.R. Ambulatory rehabilitation improves exercise capacity in patients with pulmonary hypertension. J. Card. Fail. 2011;17:196–200. doi: 10.1016/j.cardfail.2010.10.004.
    1. Martinez-Quintana E., Miranda-Calderin G., Ugarte-Lopetegui A., Rodriguez-Gonzalez F. Rehabilitation program in adult congenital heart disease patients with pulmonary hypertension. Congenit. Heart Dis. 2010;5:44–50. doi: 10.1111/j.1747-0803.2009.00370.x.
    1. Shoemaker M.J., Wilt J.L., Dasgupta R., Oudiz R.J. Exercise training in patients with pulmonary arterial hypertension: A case report. Cardiopulm. Phys. Ther. J. 2009;20:12–18. doi: 10.1097/01823246-200920040-00003.
    1. Bussotti M., Gremigni P., Pedretti R.F.E., Kransinska P., Di Marco S., Corbo P., Marchese G., Totaro P., Sommaruga M. Effects of an Outpatient Service Rehabilitation Programme in Patients Affected by Pulmonary Arterial Hypertension: An Observational Study. Cardiovasc. Hematol. Disord. Drug Targets. 2017;17:3–10. doi: 10.2174/1871529X16666161130123937.
    1. Marra A.M., Egenlauf B., Bossone E., Eichstaedt C., Grunig E., Ehlken N. Principles of rehabilitation and reactivation: Pulmonary hypertension. Respir. Int. Rev. Thorac. Dis. 2015;89:265–273. doi: 10.1159/000371855.
    1. Bertoletti L., Bouvaist H., Tromeur C., Bezzeghoud S., Dauphin C., Enache I., Bourdin A., Seronde M.-F., Montani D., Turquier S., et al. “Rehab for all!” Is it too early in pulmonary arterial hypertension? Eur. Respir. J. 2019;54:1901558. doi: 10.1183/13993003.01558-2019.
    1. Ehlken N., Lichtblau M., Klose H., Weidenhammer J., Fischer C., Nechwatal R., Uiker S., Halank M., Olsson K., Seeger W., et al. Exercise training improves peak oxygen consumption and haemodynamics in patients with severe pulmonary arterial hypertension and inoperable chronic thrombo-embolic pulmonary hypertension: A prospective, randomized, controlled trial. Eur. Heart J. 2016;37:35–44. doi: 10.1093/eurheartj/ehv337.
    1. Kim S.-Y., Lee J.-H., Huh J.W., Kim H.J., Park M.K., Ro J.Y., Oh Y.-M., Lee S.-D., Lee Y.-S. Bortezomib alleviates experimental pulmonary arterial hypertension. Am. J. Respir. Cell Mol. Biol. 2012;47:698–708. doi: 10.1165/rcmb.2011-0331OC.
    1. Zhu Y., Wu Y., Shi W., Wang J., Yan X., Wang Q., Liu Y., Yang L., Gao L., Li M. Inhibition of ubiquitin proteasome function prevents monocrotaline-induced pulmonary arterial remodeling. Life Sci. 2017;173:36–42. doi: 10.1016/j.lfs.2017.02.007.
    1. Yu W., Song X., Lin C., Ji W. Interventions and mechanisms of N-acetylcysteine on monocrotaline-induced pulmonary arterial hypertension. Exp. Ther. Med. 2018;15:5503–5509. doi: 10.3892/etm.2018.6103.
    1. Lejay A., Paradis S., Lambert A., Charles A.-L., Talha S., Enache I., Thaveau F., Chakfe N., Geny B. N-Acetyl Cysteine Restores Limb Function, Improves Mitochondrial Respiration, and Reduces Oxidative Stress in a Murine Model of Critical Limb Ischaemia. Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg. 2018;56:730–738. doi: 10.1016/j.ejvs.2018.07.025.
    1. Garnham J.O., Roberts L.D., Caspi T., Al-Owais M.M., Bullock M., Swoboda P.P., Koshy A., Gierula J., Paton M.F., Cubbon R.M., et al. Divergent skeletal muscle mitochondrial phenotype between male and female patients with chronic heart failure. J. Cachexia Sarcopenia Muscle. 2019 doi: 10.1002/jcsm.12488.
    1. Meyer A., Zoll J., Charles A.L., Charloux A., de Blay F., Diemunsch P., Sibilia J., Piquard F., Geny B. Skeletal muscle mitochondrial dysfunction during chronic obstructive pulmonary disease: Central actor and therapeutic target. Exp. Physiol. 2013;98:1063–1078. doi: 10.1113/expphysiol.2012.069468.

Source: PubMed

3
Abonnere