Feasibility and preliminary efficacy of a combined virtual reality, robotics and electrical stimulation intervention in upper extremity stroke rehabilitation

Nahid Norouzi-Gheidari, Philippe S Archambault, Katia Monte-Silva, Dahlia Kairy, Heidi Sveistrup, Michael Trivino, Mindy F Levin, Marie-Hélène Milot, Nahid Norouzi-Gheidari, Philippe S Archambault, Katia Monte-Silva, Dahlia Kairy, Heidi Sveistrup, Michael Trivino, Mindy F Levin, Marie-Hélène Milot

Abstract

Background: Approximately 80% of individuals with chronic stroke present with long lasting upper extremity (UE) impairments. We designed the perSonalized UPper Extremity Rehabilitation (SUPER) intervention, which combines robotics, virtual reality activities, and neuromuscular electrical stimulation (NMES). The objectives of our study were to determine the feasibility and the preliminary efficacy of the SUPER intervention in individuals with moderate/severe stroke.

Methods: Stroke participants (n = 28) received a 4-week intervention (3 × per week), tailored to their functional level. The functional integrity of the corticospinal tract was assessed using the Predict Recovery Potential algorithm, involving measurements of motor evoked potentials and manual muscle testing. Those with low potential for hand recovery (shoulder group; n = 18) received a robotic-rehabilitation intervention focusing on elbow and shoulder movements only. Those with a good potential for hand recovery (hand group; n = 10) received EMG-triggered NMES, in addition to robot therapy. The primary outcomes were the Fugl-Meyer UE assessment and the ABILHAND assessment. Secondary outcomes included the Motor Activity Log and the Stroke Impact Scale.

Results: Eighteen participants (64%), in either the hand or the shoulder group, showed changes in the Fugl-Meyer UE or in the ABILHAND assessment superior to the minimal clinically important difference.

Conclusions: This indicates that our personalized approach is feasible and may be beneficial in improving UE function in individuals with moderate to severe impairments due to stroke.

Trial registration: ClinicalTrials.gov NCT03903770. Registered 4 April 2019. Registered retrospectively.

Keywords: Electrical stimulation; Rehabilitation; Robotics; Stroke; Upper extremity; Virtual reality.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
a Overall view of robotic rehabilitation system. b Screen capture of virtual scene. c Arm/hand support system
Fig. 2
Fig. 2
Virtual Reality grocery shopping activity
Fig. 3
Fig. 3
Changes in Fugl Meyer Assessment-Upper Extremity from baseline for the hand (blue bars) and shoulder (orange bars) groups. Dotted line indicates Minimal Clinically Important Difference
Fig. 4
Fig. 4
Changes in ABILHAND from baseline for the hand (blue bars) and shoulder (orange bars) groups. Dotted line indicates Minimal Clinically Important Difference
Fig. 5
Fig. 5
Changes in Stroke Impact Scale-Strength from baseline for the hand (blue bars) and shoulder (orange bars) groups. Dotted line indicates Minimal Clinically Important Difference
Fig. 6
Fig. 6
Changes in Stroke Impact Scale-Activities from baseline for the hand (blue bars) and shoulder (orange bars) groups. Dotted line indicates Minimal Clinically Important Difference

References

    1. Nakayama H, Jørgensen HS, Raaschou HO, Olsen TS. Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1994;75(4):394–398. doi: 10.1016/0003-9993(94)90161-9.
    1. Andrew NE, Kilkenny MF, Naylor R, Purvis T, Cadilhac DA. The relationship between caregiver impacts and the unmet needs of survivors of stroke. Pat Prefer Adherence. 2015;9:1065–1073. doi: 10.2147/PPA.S85147.
    1. Zorowitz RD, Gillard PJ, Brainin M. Poststroke spasticity: sequelae and burden on stroke survivors and caregivers. Neurology. 2013;80(3 Suppl 2):S45–52. doi: 10.1212/WNL.0b013e3182764c86.
    1. Demir YP, et al. Three different points of view in stroke rehabilitation: patient, caregiver, and physiotherapist. Top Stroke Rehabil. 2015;22(5):377–385. doi: 10.1179/1074935714Z.0000000042.
    1. Hebert D, et al. Canadian stroke best practice recommendations: Stroke rehabilitation practice guidelines, update 2015. Int J Stroke. 2016;11(4):459–484. doi: 10.1177/1747493016643553.
    1. Ochoa-Luna C, Rahman MH, Saad M, Archambault PS. Admittance-based upper limb robotic active and active-assistive movements. Int J Adv Robot Syst. 2015;12(9):117. doi: 10.5772/60784.
    1. Prange G, Jannink M, Groothuis-Oudshoorn C, Hermens H, Ijzerman M. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev. 2006;43:171–184. doi: 10.1682/JRRD.2005.04.0076.
    1. Norouzi-Gheidari N, Archambault PS, Fung J. Effects of robot-assisted therapy on stroke rehabilitation of upper extremities: systematic review and meta-analysis of the literature. J Rehabil Res Dev. 2012;49(4):479–496. doi: 10.1682/JRRD.2010.10.0210.
    1. Mehrholz J, Pohl M, Platz T, Kugler J, Elsner B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev. 2015;11:CD006876.
    1. Norouzi-Gheidari N, Archambault PS, Fung J. Changes in arm kinematics of chronic stroke individuals following “Assist-As-Asked” robot-assisted training in virtual and physical environments: a proof-of-concept study. J Rehabil Assist Technol Eng. 2020;7:1–11.
    1. Laver KE, George S, Thomas S, Deutsch JE, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2015;2:CD008349.
    1. Saposnik G, Levin M. Virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians. Stroke. 2011;42(5):1380–1386. doi: 10.1161/STROKEAHA.110.605451.
    1. Demers M, Levin MF. Reaching kinematics and affordances in a 2d virtual environment in post-stroke patients. Montreal: World Stroke Congress; 2018.
    1. Rosewilliam S, Malhotra S, Roffe C, Jones P, Pandyan AD. Can surface neuromuscular electrical stimulation of the wrist and hand combined with routine therapy facilitate recovery of arm function in patients with stroke? Arch Phys Med Rehabil. 2012;93(10):1715–21.e1. doi: 10.1016/j.apmr.2012.05.017.
    1. Cauraugh JH, Kim S. Two coupled motor recovery protocols are better than one: electromyogram-triggered neuromuscular stimulation and bilateral movements. Stroke. 2002;33(6):1589–1594. doi: 10.1161/01.STR.0000016926.77114.A6.
    1. Monte-Silva K, Piscitelli D, Norouzi-Gheidari N, Batalla MAP, Archambault P, Levin MF. Electromyogram-related neuromuscular electrical stimulation for restoring wrist and hand movement in poststroke hemiplegia: a systematic review and meta-analysis. Neurorehabil Neural Repair. 2019;33(2):96–111. doi: 10.1177/1545968319826053.
    1. Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009;8(8):741–754. doi: 10.1016/S1474-4422(09)70150-4.
    1. Kwakkel G, Kollen B, Grond J, Prevo A. Probability of regaining dexterity in the flaccid upper limb. The impact of severity of paresis and time since onset in acute stroke. Stroke. 2003;34:2181–2186. doi: 10.1161/.
    1. Arya KN, Verma R, Garg RK. Estimating the minimal clinically important difference of an upper extremity recovery measure in subacute stroke patients. Top Stroke Rehabil. 2011;18(Suppl 1):599–610. doi: 10.1310/tsr18s01-599.
    1. Stinear CM, Lang CE, Zeiler S, Byblow WD. Advances and challenges in stroke rehabilitation. Lancet Neurol. 2020;19:348. doi: 10.1016/S1474-4422(19)30415-6.
    1. McCabe J, Monkiewicz M, Holcomb J, Pundik S, Daly JJ. Comparison of robotics, functional electrical stimulation, and motor learning methods for treatment of persistent upper extremity dysfunction after stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2015;96(6):981–990. doi: 10.1016/j.apmr.2014.10.022.
    1. Nijland RHM, van Wegen EEH, Harmeling-van der Wel BC, Kwakkel G. Accuracy of physical therapists' early predictions of upper-limb function in hospital stroke units: The EPOS Study. Phys Ther. 2013;93(4):460–469. doi: 10.2522/ptj.20120112.
    1. Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD. Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain. 2007;130:170–180. doi: 10.1093/brain/awl333.
    1. Milot MH, et al. Corticospinal excitability as a predictor of functional gains at the affected upper limb following robotic training in chronic stroke survivors. Neurorehabil Neural Repair. 2014;28(9):819–827. doi: 10.1177/1545968314527351.
    1. Borson S, Scanlan JM, Chen P, Ganguli M. The Mini-Cog as a screen for dementia: validation in a population-based sample. J Am Geriatr Soc. 2003;51(10):1451–1454. doi: 10.1046/j.1532-5415.2003.51465.x.
    1. Stinear CM, Barber PA, Petoe M, Anwar S, Byblow WD. The PREP algorithm predicts potential for upper limb recovery after stroke. Brain. 2012;135(Pt 8):2527–2535. doi: 10.1093/brain/aws146.
    1. Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient 1 a method for evaluation of physical performance. Scand J Rehabilit Med. 1975;7:13–31.
    1. Penta M, Thonnard JL, Tesio L. ABILHAND: a Rasch-built measure of manual ability. Arch Phys Med Rehabil. 1998;79(9):1038–1042. doi: 10.1016/S0003-9993(98)90167-8.
    1. Ekstrand E, Lindgren I, Lexell J, Brogårdh C. Test–retest reliability of the ABILHAND questionnaire in persons with chronic stroke. PM R. 2014;6(4):324–331. doi: 10.1016/j.pmrj.2013.09.015.
    1. Gladstone DJ, Danells CJ, Black SE. The fugl-meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair. 2002;16(3):232–240. doi: 10.1177/154596802401105171.
    1. Taub E, et al. Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil. 1993;74(4):347–354.
    1. Uswatte G, Taub E, Morris D, Vignolo M, McCulloch K. Reliability and validity of the upper-extremity Motor Activity Log-14 for measuring real-world arm use. Stroke. 2005;36(11):2493–2496. doi: 10.1161/01.STR.0000185928.90848.2e.
    1. Duncan PW, Wallace D, Lai SM, Johnson D, Embretson S, Laster LJ. The stroke impact scale version 2.0. Evaluation of reliability, validity, and sensitivity to change. Stroke. 1999;30(10):2131–2140. doi: 10.1161/01.STR.30.10.2131.
    1. Page SJ, Fulk GD, Boyne P. Clinically important differences for the upper-extremity Fugl-Meyer Scale in people with minimal to moderate impairment due to chronic stroke. Phys Ther. 2012;92(6):791–798. doi: 10.2522/ptj.20110009.
    1. Wang TN, Lin KC, Wu CY, Chung CY, Pei YC, Teng YK. Validity, responsiveness, and clinically important difference of the ABILHAND questionnaire in patients with stroke. Arch Phys Med Rehabil. 2011;92(7):1086–1091. doi: 10.1016/j.apmr.2011.01.020.
    1. Simpson LA, Eng JJ. Functional recovery following stroke: capturing changes in upper-extremity function. Neurorehabil Neural Repair. 2013;27(3):240–250. doi: 10.1177/1545968312461719.
    1. Lin KC, et al. Minimal detectable change and clinically important difference of the Stroke Impact Scale in stroke patients. Neurorehabil Neural Repair. 2010;24(5):486–492. doi: 10.1177/1545968309356295.
    1. Fasoli SE, Krebs HI, Stein J, Frontera WR, Hogan N. Effects of robotic therapy on motor impairment and recovery in chronic stroke. Arch Phys Med Rehabil. 2003;84(4):477–482. doi: 10.1053/apmr.2003.50110.
    1. Norouzi-Gheidari N, Archambault PS, Fung J. Robot-assisted arm training in physical and virtual environments: a case study of long-term chronic stroke. In: 2017 International Conference on Virtual Rehabilitation (ICVR), IEEE, 2017, pp 1–2
    1. Coupar F, Pollock A, Rowe P, Weir C, Langhorne P. Predictors of upper limb recovery after stroke: a systematic review and meta-analysis. Clin Rehabil. 2012;26(4):291–313. doi: 10.1177/0269215511420305.

Source: PubMed

3
Abonnere