Tuberculosis and COVID-19: Lessons from the Past Viral Outbreaks and Possible Future Outcomes

Radu Crisan-Dabija, Cristina Grigorescu, Cristina-Alice Pavel, Bogdan Artene, Iolanda Valentina Popa, Andrei Cernomaz, Alexandru Burlacu, Radu Crisan-Dabija, Cristina Grigorescu, Cristina-Alice Pavel, Bogdan Artene, Iolanda Valentina Popa, Andrei Cernomaz, Alexandru Burlacu

Abstract

Background: The threat of contagious infectious diseases is constantly evolving as demographic explosion, travel globalization, and changes in human lifestyle increase the risk of spreading pathogens, leading to accelerated changes in disease landscape. Of particular interest is the aftermath of superimposing viral epidemics (especially SARS-CoV-2) over long-standing diseases, such as tuberculosis (TB), which remains a significant disease for public health worldwide and especially in emerging economies.

Methods and results: The PubMed electronic database was systematically searched for relevant articles linking TB, influenza, and SARS-CoV viruses and subsequently assessed eligibility according to inclusion criteria. Using a data mining approach, we also queried the COVID-19 Open Research Dataset (CORD-19). We aimed to answer the following questions: What can be learned from other coronavirus outbreaks (focusing on TB patients)? Is coinfection (TB and SARS-CoV-2) more severe? Is there a vaccine for SARS-CoV-2? How does the TB vaccine affect COVID-19? How does one diagnosis affect the other? Discussions. Few essential elements about TB and SARS-CoV coinfections were discussed. First, lessons from past outbreaks (other coronaviruses) and influenza pandemic/seasonal outbreaks have taught the importance of infection control to avoid the severe impact on TB patients. Second, although challenging due to data scarcity, investigating the pathological pathways linking TB and SARS-CoV-2 leads to the idea that their coexistence might yield a more severe clinical evolution. Finally, we addressed the issues of vaccination and diagnostic reliability in the context of coinfection.

Conclusions: Because viral respiratory infections and TB impede the host's immune responses, it can be assumed that their lethal synergism may contribute to more severe clinical evolution. Despite the rapidly growing number of cases, the data needed to predict the impact of the COVID-19 pandemic on patients with latent TB and TB sequelae still lies ahead. The trial is registered with NCT04327206, NCT01829490, and NCT04121494.

Conflict of interest statement

The authors declare that there are no conflicts of interest regarding the publication of this article.

Copyright © 2020 Radu Crisan-Dabija et al.

Figures

Figure 1
Figure 1
Study selection process and number of papers included.
Figure 2
Figure 2
Known and possible interactions between MTB and coronaviruses.

References

    1. Zignol M., van Gemert W., Falzon D., et al. Surveillance of anti-tuberculosis drug resistance in the world: an updated analysis, 2007–2010. Bulletin of the World Health Organization. 2012;90(2):111–119. doi: 10.2471/blt.11.092585.
    1. Coker R. J. Review: multidrug-resistant tuberculosis: public health challenges. Tropical Medicine and International Health. 2004;9(1):25–40. doi: 10.1046/j.1365-3156.2003.01156.x.
    1. Beauté J., Dara M., Colombani P., Ehsani S., Gozalov O., Hovanesyan A. Tuberculosis Surveillance and Monitoring in Europe 2017. Vol. 150. Stockholm, Sweden: European Centre for Disease Prevention and Control; 2017.
    1. Golli A.-L., Niţu M. F., Turcu F., Popescu M., Ciobanu-Mitrache L., Olteanu M. Tuberculosis remains a public health problem in Romania. The International Journal of Tuberculosis and Lung Disease. 2019;23(2):226–231. doi: 10.5588/ijtld.18.0270.
    1. NiŢu F. M., Olteanu M., Streba C. T, et al. Tuberculosis and its particularities in Romania and worldwide. Romanian journal of morphology and embryology=Revue roumaine de morphologie et embryologie. 2017;58(2):385–392.
    1. Walaza S., Cohen C., Tempia S., et al. Influenza and tuberculosis co-infection: a systematic review. Influenza and Other Respiratory Viruses. 2020;14(1):77–91. doi: 10.1111/irv.12670.
    1. Small C.-L., Shaler C. R., McCormick S., et al. Influenza infection leads to increased susceptibility to subsequent bacterial superinfection by impairing NK cell responses in the lung. The Journal of Immunology. 2010;184(4):2048–2056. doi: 10.4049/jimmunol.0902772.
    1. Noymer A. The 1918 influenza pandemic hastened the decline of tuberculosis in the United States: an age, period, cohort analysis. Vaccine. 2011;29(2):B38–B41. doi: 10.1016/j.vaccine.2011.02.053.
    1. Oei W., Nishiura H. The relationship between tuberculosis and influenza death during the influenza (H1N1) pandemic from 1918-19. Computational and Mathematical Methods in Medicine. 2012;2012 doi: 10.1155/2012/124861.124861
    1. Walaza S., Cohen C., Nanoo A., Cohen A. L., McAnerney J., von Mollendorf C. Excess mortality associated with influenza among tuberculosis deaths in South Africa, 1999–2009. PLoS One. 2015;10(6) doi: 10.1371/journal.pone.0129173.e0129173
    1. Redford P. S., Mayer-Barber K. D., McNab F. W., et al. Influenza A virus impairs control of Mycobacterium tuberculosis coinfection through a type I interferon receptor-dependent pathway. The Journal of Infectious Diseases. 2014;209(2):270–274. doi: 10.1093/infdis/jit424.
    1. Organisation W. H. WHO Information on Tuberculosis and Pandemic Influenza A (H1N1) Geneva, Switzerland: WHO; 2009.
    1. Li J.-Y., You Z., Wang Q., et al. The epidemic of 2019-novel-coronavirus (2019-nCoV) pneumonia and insights for emerging infectious diseases in the future. Microbes and Infection. 2020;22(2):80–85. doi: 10.1016/j.micinf.2020.02.002.
    1. Brode S. K., Jamieson F. B., Ng R., et al. Increased risk of mycobacterial infections associated with anti-rheumatic medications. Thorax. 2015;70(7):677–682. doi: 10.1136/thoraxjnl-2014-206470.
    1. Organization W. H. MERS situation update. 2020. .
    1. Organization W. H. Coronavirus disease (COVID-19) pandemic. 2019. .
    1. Rello J., Tejada S., Userovici C., Arvaniti K., Pugin J., Waterer G. Coronavirus disease 2019 (COVID-19): a critical care perspective beyond China. Anaesthia, Critical Care & Pain Medicine. 2020;39(3):167–169. doi: 10.1016/j.accpm.2020.03.001.
    1. Chen J., Hu C., Chen L., Tang L., Zhu Y., Xu X. Clinical Study of Mesenchymal Stem Cell Treating Acute Respiratory Distress Syndrome Induced by Epidemic Influenza A (H7N9) Infection, a Hint for COVID-19 Treatment. Beijing, China: Engineering; 2020.
    1. Mayer-Barber K. D., Sher A. Cytokine and lipid mediator networks in tuberculosis. Immunological Reviews. 2015;264(1):264–275. doi: 10.1111/imr.12249.
    1. Roth S., Whitehead S., Thamthitiwat S., et al. Concurrent influenza virus infection and tuberculosis in patients hospitalized with respiratory illness in Thailand. Influenza and Other Respiratory Viruses. 2013;7(3):244–248. doi: 10.1111/j.1750-2659.2012.00413.x.
    1. Co D. O., Hogan L. H., Karman J., et al. Interactions between T cells responding to concurrent mycobacterial and influenza infections. The Journal of Immunology. 2006;177(12):8456–8465. doi: 10.4049/jimmunol.177.12.8456.
    1. Raoult D., Zumla A., Locatelli F., Ippolito G., Kroemer G. Coronavirus infections: epidemiological, clinical and immunological features and hypotheses. Cell Stress. 2020;4(4):66–75. doi: 10.15698/cst2020.04.216.
    1. Hui D. S. C., Zumla A. Severe acute respiratory syndrome. Infectious Disease Clinics of North America. 2019;33(4):869–889. doi: 10.1016/j.idc.2019.07.001.
    1. Wei L., Arnaud F., Pan-He Z., Lin Z., Zhong-Tao X., Fang T. Pulmonary tuberculosis and SARS, China. Emerging Infectious Disease Journal. 2006;12(4):p. 707.
    1. Low J. G. H., Lee C. C., Leo Y. S., Guek-Hong Low J., Lee C.-C., Leo Y.-S. Severe acute respiratory syndrome and pulmonary tuberculosis. Clinical Infectious Diseases. 2004;38(12):e123–e125. doi: 10.1086/421396.
    1. Li T., Qiu Z., Zhang L., et al. Significant changes of peripheral T lymphocyte subsets in patients with severe acute respiratory syndrome. The Journal of Infectious Diseases. 2004;189(4):648–651. doi: 10.1086/381535.
    1. Nosocomial transmission of Mycobacterium tuberculosis found through screening for severe acute respiratory syndrome—Taipei, Taiwan, 2003. MMWR Morbidity and Mortality Weekly Report. 2004;53(15):321–322.
    1. Alfaraj S. H., Al-Tawfiq J. A., Altuwaijri T. A., Memish Z. A. Middle East respiratory syndrome coronavirus and pulmonary tuberculosis coinfection: implications for infection control. Intervirology. 2017;60(1-2):53–55. doi: 10.1159/000477908.
    1. Guan W. J., Ni Z. Y., Hu Y., Liang W. H., Ou C. Q., He J. X. Clinical characteristics of coronavirus disease 2019 in China. The New England Journal of Medicine. 2020;382:1708–1720. doi: 10.1056/NEJMoa2002032.
    1. Tadolini M., Codecasa L. R., García-García J.-M., et al. Active tuberculosis, sequelae and COVID-19 co-infection: first cohort of 49 cases. European Respiratory Journal. 2020;56(1) doi: 10.1183/13993003.01398-2020.2001398
    1. Harris J., Keane J. How tumour necrosis factor blockers interfere with tuberculosis immunity. Clinical and Experimental Immunology. 2010;161(1):1–9.
    1. Organization W. H. Addressing the Needs of Vulnerable Populations. 2020.
    1. Dheda K., Gumbo T., Gandhi N. R., et al. Global control of tuberculosis: from extensively drug-resistant to untreatable tuberculosis. The Lancet Respiratory Medicine. 2014;2(4):321–338. doi: 10.1016/s2213-2600(14)70031-1.
    1. Yasri S., Wiwanitkit V. Tuberculosis and novel Wuhan coronavirus infection: pathological interrelationship. Indian Journal of Tuberculosis. 2020;67(2):p. 264. doi: 10.1016/j.ijtb.2020.02.004.
    1. Gao Y., Liu M., Chen Y., Shi S., Geng J., Tian J. Association between tuberculosis and COVID-19 severity and mortality: a rapid systematic review and meta-analysis. Journal of Medical Virology. 2020 doi: 10.1002/jmv.26311.
    1. Motta I., Centis R., D’Ambrosio L., et al. Tuberculosis, COVID-19 and migrants: preliminary analysis of deaths occurring in 69 patients from two cohorts. Pulmonology. 2020;26(4):233–240. doi: 10.1016/j.pulmoe.2020.05.002.
    1. Stochino C., Villa S., Zucchi P., Parravicini P., Gori A., Raviglione M. C. Clinical characteristics of COVID-19 and active tuberculosis co-infection in an Italian reference hospital. European Respiratory Journal. 2020;56(1) doi: 10.1183/13993003.01708-2020.2001708
    1. John R. H., David G. S., Philip S. C. Pathogen transmission and clinic scheduling. Emerging Infectious Disease Journal. 2006;12(1):p. 159.
    1. Harding E. WHO global progress report on tuberculosis elimination. The Lancet Respiratory Medicine. 2020;8(1):p. 19. doi: 10.1016/s2213-2600(19)30418-7.
    1. Amimo F., Lambert B., Magit A. What does the COVID-19 pandemic mean for HIV, tuberculosis, and malaria control? Tropical Medicine and Health. 2020;48(1):p. 32. doi: 10.1186/s41182-020-00219-6.
    1. Manyazewal T., Woldeamanuel Y., Blumberg H. M., Fekadu A., Marconi V. C. The fight to end tuberculosis must not be forgotten in the COVID-19 outbreak. Nature Medicine. 2020;26(6):811–812. doi: 10.1038/s41591-020-0917-1.
    1. Rusen I. D. Challenges in tuberculosis clinical trials in the face of the COVID-19 pandemic: a sponsor’s perspective. Tropical Medicine and Infectious Disease. 2020;5(2):p. 86. doi: 10.3390/tropicalmed5020086.
    1. Organisation W. H. Coronavirus Disease (COVID-19) Pandemic. 2019.
    1. Graham R. L., Donaldson E. F., Baric R. S. A decade after SARS: strategies for controlling emerging coronaviruses. Nature Reviews Microbiology. 2013;11(12):836–848. doi: 10.1038/nrmicro3143.
    1. Zhang N., Jiang S., Du L. Current advancements and potential strategies in the development of MERS-CoV vaccines. Expert Review of Vaccines. 2014;13(6):761–774. doi: 10.1586/14760584.2014.912134.
    1. Lu R., Zhao X., Li J., et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet. 2020;395(10224):565–574. doi: 10.1016/s0140-6736(20)30251-8.
    1. Ahmed S. F., Quadeer A. A., McKay M. R. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses. 2020;12(3) doi: 10.3390/v12030254.
    1. Soto J. A., Gálvez N. M. S., Rivera C. A., Palavecino C. E., Céspedes P. F., Rey-Jurado E. Recombinant BCG vaccines reduce pneumovirus-caused airway pathology by inducing protective humoral immunity. Frontiers in Immunology. 2018;9(2875) doi: 10.3389/fimmu.2018.02875.
    1. Angelidou A., Diray-Arce J., Conti M. G., Smolen K. K., van Haren S. D., Dowling D. J. BCG as a case study for precision vaccine development: lessons from vaccine heterogeneity, trained immunity, and immune ontogeny. Frontiers in Microbiology. 2020;11(332) doi: 10.3389/fmicb.2020.00332.
    1. Andersen P., Doherty T. M. The success and failure of BCG - implications for a novel tuberculosis vaccine. Nature Reviews Microbiology. 2005;3(8):656–662. doi: 10.1038/nrmicro1211.
    1. Aaby P., Benn C. S. Saving lives by training innate immunity with bacille Calmette-Guerin vaccine. Proceedings of the National Academy of Sciences. 2012;109(43):17317–17318. doi: 10.1073/pnas.1215761109.
    1. Hollm-Delgado M.-G., Stuart E. A., Black R. E. Acute lower respiratory infection among Bacille Calmette-Guérin (BCG)-vaccinated children. Pediatrics. 2014;133(1):e73–e81. doi: 10.1542/peds.2013-2218.
    1. Pollard A. J., Finn A., Curtis N. Non-specific effects of vaccines: plausible and potentially important, but implications uncertain. Archives of Disease in Childhood. 2017;102(11):1077–1081. doi: 10.1136/archdischild-2015-310282.
    1. Curtis N., Sparrow A., Ghebreyesus T. A., Netea M. G. Considering BCG vaccination to reduce the impact of COVID-19. The Lancet. 2020;395(10236):1545–1546. doi: 10.1016/s0140-6736(20)31025-4.
    1. Chu D. K., Akl E. A., Duda S., et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. The Lancet. 2020;395(10242):1973–1987. doi: 10.1016/s0140-6736(20)31142-9.
    1. Covián C., Fernández-Fierro A., Retamal-Díaz A., Díaz F. E., Vasquez A. E., Lay M. K. BCG-induced cross-protection and development of trained immunity: implication for vaccine design. Frontiers in Immunology. 2019;10(2806) doi: 10.3389/fimmu.2019.02806.
    1. Folegatti P. M., Ewer K. J., Aley P. K., Angus B., Becker S., Belij-Rammerstorfer S. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. The Lancet. 2020;369(10249):467–478. doi: 10.1016/S0140-6736(20)31604-4.
    1. Wang N., Shang J., Jiang S., Du L. Subunit vaccines against emerging pathogenic human coronaviruses. Frontiers in Microbiology. 2020;11(298) doi: 10.3389/fmicb.2020.00298.
    1. Kuate S., Cinatl J., Doerr H. W., Überla K. Exosomal vaccines containing the S protein of the SARS coronavirus induce high levels of neutralizing antibodies. Virology. 2007;362(1):26–37. doi: 10.1016/j.virol.2006.12.011.
    1. Robson B. Computers and viral diseases. Preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative peptidomimetic antagonist against the SARS-CoV-2 (2019-nCoV, COVID-19) coronavirus. Computers in Biology and Medicine. 2020;119 doi: 10.1016/j.compbiomed.2020.103670.103670
    1. Pang J., Wang M. X., Ang I. Y. H., et al. Potential rapid diagnostics, vaccine and therapeutics for 2019 novel coronavirus (2019-ncoV): a systematic review. Journal of Clinical Medicine. 2020;9(3):p. 623. doi: 10.3390/jcm9030623.
    1. Eriksson K. K., Makia D., Maier R., Ludewig B., Thiel V. Towards a coronavirus-based HIV multigene vaccine. Clinical & Developmental Immunology. 2006;13(2–4):353–360. doi: 10.1080/17402520600579168.
    1. Di L., Li Y. The risk factor of false-negative and false-positive for T-SPOT.TB in active tuberculosis. Journal of Clinical Laboratory Analysis. 2018;32(2) doi: 10.1002/jcla.22273.e22273
    1. Lu L. L., Smith M. T., Yu K. K. Q., et al. IFN-γ-independent immune markers of Mycobacterium tuberculosis exposure. Nature Medicine. 2019;25(6):977–987. doi: 10.1038/s41591-019-0441-3.
    1. Whittaker E., López-Varela E., Broderick C., Seddon J. A. Examining the complex relationship between tuberculosis and other infectious diseases in children. Frontiers in Pediatrics. 2019;7(233) doi: 10.3389/fped.2019.00233.
    1. Yamasue M., Komiya K., Usagawa Y., Umeki K., Nureki S.-i., Ando M. Factors associated with false negative interferon-γ release assay results in patients with tuberculosis: a systematic review with meta-analysis. Scientific Reports. 2020;10(1):p. 1607. doi: 10.1038/s41598-020-58459-9.
    1. Kwon Y.-S., Kim Y. H., Jeon K., et al. Factors that predict negative results of quantiferon-tb gold in-tube test in patients with culture-confirmed tuberculosis: a multicenter retrospective cohort study. PLoS One. 2015;10(6) doi: 10.1371/journal.pone.0129792.e0129792
    1. Zhang W., Zhao Y., Zhang F., et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): the Perspectives of clinical immunologists from China. Clinical Immunology. 2020;214 doi: 10.1016/j.clim.2020.108393.108393
    1. Salehi S., Abedi A., Balakrishnan S., Gholamrezanezhad A. Coronavirus disease 2019 (COVID-19): a systematic review of imaging findings in 919 patients. American Journal of Roentgenology. 2020;215(1):1–7.

Source: PubMed

3
Abonnere