Validation, Reliability, and Responsiveness Outcomes Of Kinematic Assessment With An RGB-D Camera To Analyze Movement In Subacute And Chronic Low Back Pain

Manuel Trinidad-Fernández, David Beckwée, Antonio Cuesta-Vargas, Manuel González-Sánchez, Francisco-Angel Moreno, Javier González-Jiménez, Erika Joos, Peter Vaes, Manuel Trinidad-Fernández, David Beckwée, Antonio Cuesta-Vargas, Manuel González-Sánchez, Francisco-Angel Moreno, Javier González-Jiménez, Erika Joos, Peter Vaes

Abstract

Background: The RGB-D camera is an alternative to asses kinematics in order to obtain objective measurements of functional limitations. The aim of this study is to analyze the validity, reliability, and responsiveness of the motion capture depth camera in sub-acute and chronic low back pain patients.

Methods: Thirty subjects (18-65 years) with non-specific lumbar pain were screened 6 weeks following an episode. RGB-D camera measurements were compared with an inertial measurement unit. Functional tests included climbing stairs, bending, reaching sock, lie-to-sit, sit-to-stand, and timed up-and-go. Subjects performed the maximum number of repetitions during 30 s. Validity was analyzed using Spearman's correlation, reliability of repetitions was calculated by the intraclass correlation coefficient and the standard error of measurement, and receiver operating characteristic curves were calculated to assess the responsiveness.

Results: The kinematic analysis obtained variable results according to the test. The time variable had good values in the validity and reliability of all tests (r = 0.93-1.00, (intraclass correlation coefficient (ICC) = 0.62-0.93). Regarding kinematics, the best results were obtained in bending test, sock test, and sit-to-stand test (r = 0.53-0.80, ICC = 0.64-0.83, area under the curve (AUC) = 0.55-84).

Conclusion: Functional tasks, such as bending, sit-to-stand, reaching, and putting on sock, assessed with the RGB-D camera, revealed acceptable validity, reliability, and responsiveness in the assessment of patients with low back pain (LBP).

Trial registration: ClinicalTrials.gov NCT03293095 "Functional Task Kinematic in Musculoskeletal Pathology" September 26, 2017.

Keywords: depth camera; functional test; low back pain; motion capture system; reliability; responsiveness; validation.

Conflict of interest statement

M.T.-F. has received a grant from the University of Malaga in order to do an international stay inside the PhD. This grant does not influence or bias the work. The rest of the authors declare that they have no conflicts of interest.

Figures

Figure 1
Figure 1
Experimental setup for (a) the functional tests and (b) the timed up-and-go test.
Figure 2
Figure 2
Joints information collected by the camera and 3D reference system of the camera and the inertial measurement unit.
Figure 3
Figure 3
Functional tests and timed up-and-go test. Examples of kinematic pattern of each performance and control points.
Figure 4
Figure 4
Bland–Altman plots for displacement, velocity, and acceleration in the bending test comparing the RGB-D camera and IMU. The lines represent the mean of the differences and limits of agreement.
Figure 5
Figure 5
Bland–Altman plots for displacement, velocity, and acceleration in the STS test comparing the RGB-D camera and IMU. The lines represent the mean of the differences and limits of agreement.
Figure 6
Figure 6
Bland–Altman plots for displacement, velocity, and acceleration in the sock test comparing the RGB-D camera and IMU. The lines represent the mean of the differences and limits of agreement.

References

    1. Duthey B. Priority Medicines for Europe and the World-2013 Update. Background Paper 6-Priority Diseases and Reasons for Inclusion. BP 6.24-Low Back Pain. Vol. 1. WHO Collaborating Centre for Pharmaceutical Policy and Regulation. WHO; Geneva, Switzerland: 2013. pp. 1–29.
    1. van Dongen J.M., Ketheswaran J., Tordrup D., Ostelo R.W.J.G., Bertollini R., van Tulder M.W. Health economic evidence gaps and methodological constraints in low back pain and neck pain: Results of the Research Agenda for Health Economic Evaluation (RAHEE) project. Best Pract. Res. Clin. Rheumatol. 2016;30:981–993. doi: 10.1016/j.berh.2017.09.001.
    1. Shmagel A., Foley R., Ibrahim H. Epidemiology of Chronic Low Back Pain in US Adults: Data from the 2009–2010 National Health and Nutrition Examination Survey. Arthritis Care Res. (Hoboken) 2016;68:1688–1694. doi: 10.1002/acr.22890.
    1. Huang R., Ning J., Chuter V.H., Taylor J.B., Christophe D., Meng Z., Xu Y., Jiang L. Exercise alone and exercise combined with education both prevent episodes of low back pain and related absenteeism: Systematic review and network meta-analysis of randomised controlled trials (RCTs) aimed at preventing back pain. Br. J. Sports Med. 2019 doi: 10.1136/bjsports-2018-100035.
    1. Taylor J.B., Goode A.P., George S.Z., Cook C.E. Incidence and risk factors for first-time incident low back pain: A systematic review and meta-analysis. Spine J. 2014;14:2299–2319. doi: 10.1016/j.spinee.2014.01.026.
    1. Royal Dutch Society for Physical Therapy . KNGF Guideline: Low Back Pain. Royal Dutch Society for Physical Therapy; Amersfoort, The Netherlands: 2013.
    1. Hidalgo B., Gilliaux M., Poncin W., Detrembleur C. Reliability and validity of a kinematic spine model during active trunk movement in healthy subjects and patients with chronic non-specific low back pain. J. Rehabil. Med. 2012;44:756–763. doi: 10.2340/16501977-1015.
    1. Delitto A., George S.Z., Van Dillen L., Whitman J.M., Sowa G., Shekelle P., Denninger T.R., Godges J.J., Orthopaedic Section of the American Physical Therapy Association Low Back Pain. J. Orthop. Sports Phys. Ther. 2012;42:A1–A57. doi: 10.2519/jospt.2012.42.4.A1.
    1. Urits I., Burshtein A., Sharma M., Testa L., Gold P.A., Orhurhu V., Viswanath O., Jones M.R., Sidransky M.A., Spektor B., et al. Low Back Pain, a Comprehensive Review: Pathophysiology, Diagnosis, and Treatment. Curr. Pain Headache Rep. 2019;23:23. doi: 10.1007/s11916-019-0757-1.
    1. Papi E., Bull A.M.J., McGregor A.H. Is there evidence to use kinematic/kinetic measures clinically in low back pain patients? A systematic review. Clin. Biomech. (Bristol Avon) 2018;55:53–64. doi: 10.1016/j.clinbiomech.2018.04.006.
    1. Carlsson H., Rasmussen-Barr E. Clinical screening tests for assessing movement control in non-specific low-back pain. A systematic review of intra- and inter-observer reliability studies. Man. Ther. 2013;18:103–110. doi: 10.1016/j.math.2012.08.004.
    1. Auvinet E., Multon F., Meunier J. New Lower-Limb Gait Asymmetry Indices Based on a Depth Camera. Sensors (Basel) 2015;15:4605–4623. doi: 10.3390/s150304605.
    1. Clark R.A., Pua Y.-H., Fortin K., Ritchie C., Webster K.E., Denehy L., Bryant A.L. Validity of the Microsoft Kinect for assessment of postural control. Gait Posture. 2012;36:372–377. doi: 10.1016/j.gaitpost.2012.03.033.
    1. Grooten W.J.A., Sandberg L., Ressman J., Diamantoglou N., Johansson E., Rasmussen-Barr E. Reliability and validity of a novel Kinect-based software program for measuring posture, balance and side-bending. BMC Musculoskelet Disord. 2018;19:6. doi: 10.1186/s12891-017-1927-0.
    1. Moreno F.-Á., Merchán-Baeza J.A., González-Sánchez M., González-Jiménez J., Cuesta-Vargas A.I. Experimental Validation of Depth Cameras for the Parameterization of Functional Balance of Patients in Clinical Tests. Sensors (Basel) 2017;17:424. doi: 10.3390/s17020424.
    1. Roach K.E. Measurement of Health Outcomes: Reliability, Validity and Responsiveness. JPO J. Prosthet. Orthot. 2006;18:P8. doi: 10.1097/00008526-200601001-00003.
    1. Clark R.A., Mentiplay B.F., Hough E., Pua Y.H. Three-dimensional cameras and skeleton pose tracking for physical function assessment: A review of uses, validity, current developments and Kinect alternatives. Gait Posture. 2019;68:193–200. doi: 10.1016/j.gaitpost.2018.11.029.
    1. Lebel K., Boissy P., Hamel M., Duval C. Inertial measures of motion for clinical biomechanics: Comparative assessment of accuracy under controlled conditions - effect of velocity. PLoS ONE. 2013;8:e79945. doi: 10.1371/journal.pone.0079945.
    1. Morgado Ramírez D.Z., Strike S., Lee R.Y.W. Measurement of transmission of vibration through the human spine using skin-mounted inertial sensors. Med. Eng. Phys. 2013;35:690–695. doi: 10.1016/j.medengphy.2012.12.013.
    1. Galna B., Barry G., Jackson D., Mhiripiri D., Olivier P., Rochester L. Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson’s disease. Gait Posture. 2014;39:1062–1068. doi: 10.1016/j.gaitpost.2014.01.008.
    1. Ye M., Yang C., Stankovic V., Stankovic L., Kerr A. A Depth Camera Motion Analysis Framework for Tele-rehabilitation: Motion Capture and Person-Centric Kinematics Analysis. IEEE J. Sel. Top. Signal Process. 2016;10:877–887. doi: 10.1109/JSTSP.2016.2559446.
    1. Lee J.K., Desmoulin G.T., Khan A.H., Park E.J. A portable inertial sensing-based spinal motion measurement system for low back pain assessment. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011;2011:4737–4740.
    1. van Tulder M., Becker A., Bekkering T., Breen A., del Real M.T.G., Hutchinson A., Koes B., Laerum E., Malmivaara A. Chapter 3. European guidelines for the management of acute nonspecific low back pain in primary care. Eur. Spine J. 2006;15(Suppl. 2):S169–S191. doi: 10.1007/s00586-006-1071-2.
    1. Ligthart G.J., Corberand J.X., Fournier C., Galanaud P., Hijmans W., Kennes B., Müller-Hermelink H.K., Steinmann G.G. Admission criteria for immunogerontological studies in man: The SENIEUR protocol. Mech. Ageing Dev. 1984;28:47–55. doi: 10.1016/0047-6374(84)90152-0.
    1. Kask T., Kuusik A. Performance comparison of smartphones and a wearable motion sensor for patient m-assessment; Proceedings of the 2018 16th Biennial Baltic Electronics Conference (BEC); Tallinn, Estonia. 8–10 October 2018; pp. 1–4.
    1. Galán-Mercant A., Barón-López F.J., Labajos-Manzanares M.T., Cuesta-Vargas A.I. Reliability and criterion-related validity with a smartphone used in timed-up-and-go test. Biomed. Eng. Online. 2014;13:156. doi: 10.1186/1475-925X-13-156.
    1. van Weely S.F.E., van Denderen C.J., van der Horst-Bruinsma I.E., Nurmohamed M.T., Dijkmans B.A.C., Dekker J., Steultjens M.P.M. Reproducibility of performance measures of physical function based on the BASFI, in ankylosing spondylitis. Rheumatology (Oxford) 2009;48:1254–1260. doi: 10.1093/rheumatology/kep190.
    1. Reicherz A., Brach M., Cerny J., Nicolai S., Becker C., Lindemann U. Development of the Lie-to-Sit-to-Stand-to-Walk Transfer (LSSWT) test for early mobilization in older patients in geriatric rehabilitation. Z. Gerontol. Geriatr. 2011;44:262–267. doi: 10.1007/s00391-011-0169-2.
    1. Kerr K., White J., Barr D., Mollan R. Standardization and definitions of the sit-stand-sit movement cycle. Gait Posture. 1994;2:182–190. doi: 10.1016/0966-6362(94)90006-X.
    1. Podsiadlo D., Richardson S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991;39:142–148.
    1. Zerkak D., Métivier J.-C., Fouquet B., Beaudreuil J. Validation of a French version of Roland-Morris questionnaire in chronic low back pain patients. Ann. Phys. Rehabil. Med. 2013;56:613–620. doi: 10.1016/j.rehab.2013.08.006.
    1. Brouwer S., Kuijer W., Dijkstra P.U., Göeken L.N.H., Groothoff J.W., Geertzen J.H.B. Reliability and stability of the Roland Morris Disability Questionnaire: Intra class correlation and limits of agreement. Disabil. Rehabil. 2004;26:162–165. doi: 10.1080/09638280310001639713.
    1. Perneger T.V., Combescure C., Courvoisier D.S. General population reference values for the French version of the EuroQol EQ-5D health utility instrument. Value Health. 2010;13:631–635. doi: 10.1111/j.1524-4733.2010.00727.x.
    1. Versteegh M.M., Vermeulen K.M., Evers S.M.A.A., Wit GA de Prenger R., Stolk E.A. Dutch Tariff for the Five-Level Version of EQ-5D. Value Health. 2016;19:343–352. doi: 10.1016/j.jval.2016.01.003.
    1. Gandek B., Ware J.E., Aaronson N.K., Apolone G., Bjorner J.B., Brazier J.E., Bullinger M., Kaasa S., Leplege A., Prieto L., et al. Cross-validation of item selection and scoring for the SF-12 Health Survey in nine countries: Results from the IQOLA Project. International Quality of Life Assessment. J. Clin. Epidemiol. 1998;51:1171–1178. doi: 10.1016/S0895-4356(98)00109-7.
    1. Kamper S.J., Ostelo R.W.J.G., Knol D.L., Maher C.G., de Vet H.C.W., Hancock M.J. Global Perceived Effect scales provided reliable assessments of health transition in people with musculoskeletal disorders, but ratings are strongly influenced by current status. J. Clin. Epidemiol. 2010;63:760–766. doi: 10.1016/j.jclinepi.2009.09.009.
    1. Blanco J.-L. Development of Scientific Applications with the Mobile Robot Programming Toolkit—The MRPT Reference Book [Internet] [(accessed on 11 November 2017)]; Available online: .
    1. Shrout P.E., Fleiss J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979;86:420–428. doi: 10.1037/0033-2909.86.2.420.
    1. Koo T.K., Li M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016;15:155–163. doi: 10.1016/j.jcm.2016.02.012.
    1. Swets J.A. Measuring the accuracy of diagnostic systems. Science. 1988;240:1285–1293. doi: 10.1126/science.3287615.
    1. De Yébenes Prous M., Rodríguez Salvanés F., Carmona Ortells L. Responsiveness of outcome measures. Reumatol. Clin. 2008;4:240–247. doi: 10.1016/S1699-258X(08)75545-1.
    1. Mentiplay B.F., Hasanki K., Perraton L.G., Pua Y.-H., Charlton P.C., Clark R.A. Three-dimensional assessment of squats and drop jumps using the Microsoft Xbox One Kinect: Reliability and validity. J. Sports Sci. 2018;36:2202–2209. doi: 10.1080/02640414.2018.1445439.
    1. Bohannon R. Sit-to-stand test for measuring performance of lower extremity muscles. Percept. Mot. Skills. 1995;80:163–166. doi: 10.2466/pms.1995.80.1.163.
    1. Matthew R.P., Seko S., Bailey J., Bajcsy R., Lotz J. Estimating Sit-to-Stand Dynamics Using a Single Depth Camera. IEEE J. Biomed. Health Inform. 2019;23:2592–2602. doi: 10.1109/JBHI.2019.2897245.
    1. Leightley D., Yap M.H. Digital Analysis of Sit-to-Stand in Masters Athletes, Healthy Old People, and Young Adults Using a Depth Sensor. Healthcare (Basel) 2018;6:21. doi: 10.3390/healthcare6010021.
    1. Aslan Telci E., Yagci N., Can T., Cavlak U. The impact of chronic low back pain on physical performance, fear avoidance beliefs, and depressive symptoms: A comparative study on Turkish elderly population. Pak. J. Med. Sci. 2013;29:560–564. doi: 10.12669/pjms.292.3196.
    1. Galán-Mercant A., Cuesta-Vargas A.I. Differences in trunk kinematic between frail and nonfrail elderly persons during turn transition based on a smartphone inertial sensor. Biomed. Res. Int. 2013;2013:279197. doi: 10.1155/2013/279197.
    1. Tan D., Pua Y.-H., Balakrishnan S., Scully A., Bower K.J., Prakash K.M., Tan E.-K., Chew J.-S., Poh E., Tan S.-B., et al. Automated analysis of gait and modified timed up and go using the Microsoft Kinect in people with Parkinson’s disease: Associations with physical outcome measures. Med. Biol. Eng. Comput. 2019;57:369–377. doi: 10.1007/s11517-018-1868-2.
    1. Khoshelham K., Elberink S.O. Accuracy and resolution of Kinect depth data for indoor mapping applications. Sensors (Basel) 2012;12:1437–1454. doi: 10.3390/s120201437.
    1. Vernon S., Paterson K., Bower K., McGinley J., Miller K., Pua Y.-H., Clark R.A. Quantifying individual components of the timed up and go using the kinect in people living with stroke. Neurorehabil. Neural. Repair. 2015;29:48–53. doi: 10.1177/1545968314529475.
    1. Cuesta-Vargas A.I., Galán-Mercant A., Williams J.M. The use of inertial sensors system for human motion analysis. Phys. Ther. Rev. 2010;15:462–473. doi: 10.1179/1743288X11Y.0000000006.
    1. Carpentier J., Benallegue M., Laumond J.-P. On the centre of mass motion in human walking. Int. J. Autom. Comput. 2017;14:542–551. doi: 10.1007/s11633-017-1088-5.
    1. Galán-Mercant A., Cuesta-Vargas A.I. Clinical frailty syndrome assessment using inertial sensors embedded in smartphones. Physiol. Meas. 2015;36:1929–1942. doi: 10.1088/0967-3334/36/9/1929.

Source: PubMed

3
Abonnere