Pathophysiology and Clinical Meaning of Ventilation-Perfusion Mismatch in the Acute Respiratory Distress Syndrome

Douglas Slobod, Anna Damia, Marco Leali, Elena Spinelli, Tommaso Mauri, Douglas Slobod, Anna Damia, Marco Leali, Elena Spinelli, Tommaso Mauri

Abstract

Acute respiratory distress syndrome (ARDS) remains an important clinical challenge with a mortality rate of 35-45%. It is being increasingly demonstrated that the improvement of outcomes requires a tailored, individualized approach to therapy, guided by a detailed understanding of each patient's pathophysiology. In patients with ARDS, disturbances in the physiological matching of alveolar ventilation (V) and pulmonary perfusion (Q) (V/Q mismatch) are a hallmark derangement. The perfusion of collapsed or consolidated lung units gives rise to intrapulmonary shunting and arterial hypoxemia, whereas the ventilation of non-perfused lung zones increases physiological dead-space, which potentially necessitates increased ventilation to avoid hypercapnia. Beyond its impact on gas exchange, V/Q mismatch is a predictor of adverse outcomes in patients with ARDS; more recently, its role in ventilation-induced lung injury and worsening lung edema has been described. Innovations in bedside imaging technologies such as electrical impedance tomography readily allow clinicians to determine the regional distributions of V and Q, as well as the adequacy of their matching, providing new insights into the phenotyping, prognostication, and clinical management of patients with ARDS. The purpose of this review is to discuss the pathophysiology, identification, consequences, and treatment of V/Q mismatch in the setting of ARDS, employing experimental data from clinical and preclinical studies as support.

Keywords: acute respiratory distress syndrome; electrical impedance tomography; perfusion; ventilation; ventilation-induced lung injury.

Conflict of interest statement

TM reports receiving personal fees from Fisher and Paykel, Dräger, Mindray and B. Braun. The other authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Mechanisms of V/Q mismatch and their interaction.
Figure 2
Figure 2
Ventilation, perfusion, and ventilation-perfusion matching via electrical impedance tomography in 4 experimental swine study groups. Images on the left display regional ventilation, middle images depict regional perfusion and were obtained by administering a hypertonic saline bolus under apneic conditions (see text), and images on the right depict ventilation-perfusion matching, which is expressed as the superposition of the ventilation and perfusion maps. The percentages of ventilation and perfusion to each of the four quadrants are annotated as blue and red numbers, respectively, on the right-side panels. The letters R and L indicate the right and left lung, respectively. (Panels A and B) were obtained during one-lung ventilation (OLV) with exclusion of the left lung and a tidal volume of 15 mL/kg (panel A) and 7.5 mL/kg (panel B) [83]. At both tidal volumes, there is no ventilation of the left lung and perfusion appears to be redistributed to the ventilated lung. OLV at higher tidal volume (panel A) caused bilateral lung injury (lung histological score 5 ± 2 in the right lung and 10 ± 2 in the left lung); this was compared to two-lung-ventilated controls (lung histological score 3 ± 1 in right lung and 3 ± 1 in left lung). Interestingly, lowering tidal volume to 7.5 mL/kg (panel B) attenuated inflammation and lung injury (lung histological score 3 ± 1 in the right lung and 7 ± 1 in the left lung) despite an absence of change in the overall distributions of ventilation and perfusion (ANOVA p ≤ 0.01 for the right lung and p ≤ 0.001 for the left lung). (Panels C and D) were obtained from a study of selective left pulmonary artery ligation [84]. (Panel C) represents ligation alone whereas (panel D) represents ligation + 5% inhaled CO2. The two groups differ significantly both for ventilation and perfusion distributions: In the ligation group, perfusion is only present in the right lung, ventilation is also diverted to the right lung, and total lung histological score was 11 ± 3. In the ligation + inhaled CO2 group, there is a more homogeneous distribution of ventilation and perfusion in both lungs and total lung histological score decreased to 4 ± 2 (ANOVA p ≤ 0.0001). The occurrence of perfusion to the ligated lung with inhaled CO2 is thought to transpire due to increased flow through bronchial circulation.
Figure 3
Figure 3
Evaluation of ventilation and perfusion maps at the bedside using electrical impedance tomography. Left-side blue panels display the regional distribution of ventilation. The red-colored middle panels display the regional distribution of perfusion (see text for details). Right-sided panels show the superposition of the contours of the ventilation and perfusion maps. The percentages of ventilation and perfusion for each of the four quadrants are annotated as blue and red numbers, respectively. (Row A) was obtained from a patient with COVID-19-associated acute respiratory distress syndrome (ARDS) ventilated in the supine position. The maps displayed in (row B) were obtained from the same patient during ventilation in the prone position, resulting in a reduction in ventilation-perfusion mismatch [60]. (Row C) illustrates an ARDS patient in the supine position with a set PEEP of 5 cmH2O. (Row D) was obtained from the same patient in the supine position after PEEP was increased to 15 cmH2O, resulting in an increase in the size of the ventilated area and improved superposition of the ventilation and perfusion maps [63].

References

    1. Bellani G., Laffey J.G., Pham T., Fan E., Brochard L., Esteban A., Gattinoni L., van Haren F., Larsson A., McAuley D.F., et al. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA. 2016;315:788–800. doi: 10.1001/jama.2016.0291.
    1. Ranieri V.M., Rubenfeld G.D., Thompson B.T., Ferguson N.D., Caldwell E., Fan E., Camporota L., Slutsky A.S. Acute respiratory distress syndrome: The Berlin Definition. JAMA. 2012;307:2526–2533.
    1. Acute Respiratory Distress Syndrome Network. Brower R.G., Matthay M.A., Morris A., Schoenfeld D., Thompson B.T., Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 2000;342:1301–1308.
    1. Slutsky A.S., Ranieri V.M. Ventilator-induced lung injury. N. Engl. J. Med. 2013;369:2126–2136. doi: 10.1056/NEJMra1208707.
    1. Dantzker D.R., Brook C.J., Dehart P., Lynch J.P., Weg J.G. Ventilation-perfusion distributions in the adult respiratory distress syndrome. Am. Rev. Respir. Dis. 1979;120:1039–1052.
    1. Pelosi P., D’Andrea L., Vitale G., Pesenti A., Gattinoni L. Vertical gradient of regional lung inflation in adult respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 1994;149:8–13. doi: 10.1164/ajrccm.149.1.8111603.
    1. Cheng I.W., Ware L.B., Greene K.E., Nuckton T.J., Eisner M.D., Matthay M.A. Prognostic value of surfactant proteins A and D in patients with acute lung injury. Crit. Care Med. 2003;31:20–27. doi: 10.1097/00003246-200301000-00003.
    1. Tsangaris I., Lekka M.E., Kitsiouli E., Constantopoulos S., Nakos G. Bronchoalveolar lavage alterations during prolonged ventilation of patients without acute lung injury. Eur. Respir. J. 2003;21:495–501. doi: 10.1183/09031936.03.00037902.
    1. Gattinoni L., Caironi P., Cressoni M., Chiumello D., Ranieri V.M., Quintel M., Russo S., Patroniti N., Cornejo R., Bugedo G. Lung recruitment in patients with the acute respiratory distress syndrome. N. Engl. J. Med. 2006;354:1775–1786. doi: 10.1056/NEJMoa052052.
    1. Bachofen M., Weibel E.R. Alterations of the gas exchange apparatus in adult respiratory insufficiency associated with septicemia. Am. Rev. Respir. Dis. 1977;116:589–615. doi: 10.1164/arrd.1977.116.4.589.
    1. Santos C., Ferrer M., Roca J., Torres A., Hernandez C., Rodriguez-Roisin R. Pulmonary gas exchange response to oxygen breathing in acute lung injury. Am. J. Respir. Crit. Care Med. 2000;161:26–31. doi: 10.1164/ajrccm.161.1.9902084.
    1. Suter P.M., Fairley H.B., Schlobohm R.M. Shunt, lung volume and perfusion during short periods of ventilation with oxygen. Anesthesiology. 1975;43:617–627. doi: 10.1097/00000542-197512000-00003.
    1. Theissen J.L., Loick H.M., Curry B.B., Traber L.D., Herndon D.N., Traber D.L. Time course of hypoxic pulmonary vasoconstriction after endotoxin infusion in unanesthetized sheep. J. Appl. Physiol. 1991;70:2120–2125. doi: 10.1152/jappl.1991.70.5.2120.
    1. Hales C.A., Sonne L., Peterson M., Kong D., Miller M., Watkins W.D. Role of thromboxane and prostacyclin in pulmonary vasomotor changes after endotoxin in dogs. J. Clin. Investig. 1981;68:497–505. doi: 10.1172/JCI110281.
    1. Stevens T., Morris K., McMurtry I.F., Zamora M., Tucker A. Pulmonary and systemic vascular responsiveness to TNF-alpha in conscious rats. J. Appl. Physiol. 1993;74:1905–1910. doi: 10.1152/jappl.1993.74.4.1905.
    1. Boissier F., Razazi K., Thille A.W., Roche-Campo F., Leon R., Vivier E., Brochard L., Brun-Buisson C., Mekontso Dessap A. Echocardiographic detection of transpulmonary bubble transit during acute respiratory distress syndrome. Ann. Intensive Care. 2015;5:5. doi: 10.1186/s13613-015-0046-z.
    1. Mekontso Dessap A., Boissier F., Leon R., Carreira S., Campo F.R., Lemaire F., Brochard L. Prevalence and prognosis of shunting across patent foramen ovale during acute respiratory distress syndrome. Crit. Care Med. 2010;38:1786–1792. doi: 10.1097/CCM.0b013e3181eaa9c8.
    1. Gattinoni L., Bombino M., Pelosi P., Lissoni A., Pesenti A., Fumagalli R., Tagliabue M. Lung structure and function in different stages of severe adult respiratory distress syndrome. JAMA. 1994;271:1772–1779. doi: 10.1001/jama.1994.03510460064035.
    1. Bein T., Reber A., Stjernstrom H., Metz C., Taeger K., Hedenstierna G. Ventilation-perfusion ratio in patients with acute respiratory insufficiency. Anaesthesist. 1996;45:337–342.
    1. Whitelaw W.A., Derenne J.P., Milic-Emili J. Occlusion pressure as a measure of respiratory center output in conscious man. Respir. Physiol. 1975;23:181–199. doi: 10.1016/0034-5687(75)90059-6.
    1. Greene R., Zapol W.M., Snider M.T., Reid L., Snow R., O’Connell R.S., Novelline R.A. Early bedside detection of pulmonary vascular occlusion during acute respiratory failure. Am. Rev. Respir. Dis. 1981;124:593–601.
    1. Tomashefski J.F., Jr., Davies P., Boggis C., Greene R., Zapol W.M., Reid L.M. The pulmonary vascular lesions of the adult respiratory distress syndrome. Am. J. Pathol. 1983;112:112–126.
    1. Nuckton T.J., Alonso J.A., Kallet R.H., Daniel B.M., Pittet J.F., Eisner M.D., Matthay M.A. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N. Engl. J. Med. 2002;346:1281–1286. doi: 10.1056/NEJMoa012835.
    1. Sinha P., Calfee C.S., Beitler J.R., Soni N., Ho K., Matthay M.A., Kallet R.H. Physiologic Analysis and Clinical Performance of the Ventilatory Ratio in Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2019;199:333–341. doi: 10.1164/rccm.201804-0692OC.
    1. Patel B.V., Arachchillage D.J., Ridge C.A., Bianchi P., Doyle J.F., Garfield B., Ledot S., Morgan C., Passariello M., Price S., et al. Pulmonary Angiopathy in Severe COVID-19: Physiologic, Imaging, and Hematologic Observations. Am. J. Respir. Crit. Care Med. 2020;202:690–699. doi: 10.1164/rccm.202004-1412OC.
    1. Kuwabara S., Duncalf D. Effect of anatomic shunt on physiologic deadspace-to-tidal volume ratio—A new equation. Anesthesiology. 1969;31:575–577. doi: 10.1097/00000542-196912000-00012.
    1. Berggren S.M. The Oxygen Deficit of Arterial Blood Caused by Non-Ventilating Parts of the Lung. Norstedt; Stockholm, Sweden: 1942.
    1. Riley R.L., Cournand A. Ideal alveolar air and the analysis of ventilation-perfusion relationships in the lungs. J. Appl. Physiol. 1949;1:825–847. doi: 10.1152/jappl.1949.1.12.825.
    1. Shapiro B.A., Cane R.D., Harrison R.A., Steiner M.C. Changes in intrapulmonary shunting with administration of 100 percent oxygen. Chest. 1980;77:138–141. doi: 10.1378/chest.77.2.138.
    1. Reines H.D., Civetta J.M. The inaccuracy of using 100% oxygen to determine intrapulmonary shunts in spite of PEEP. Crit. Care Med. 1979;7:301–303. doi: 10.1097/00003246-197907000-00003.
    1. Ming D.K., Patel M.S., Hopkinson N.S., Ward S., Polkey M.I. The ‘anatomic shunt test’ in clinical practice; contemporary description of test and in-service evaluation. Thorax. 2014;69:773–775. doi: 10.1136/thoraxjnl-2013-204103.
    1. Wang Y., Zhong M. Inhaled Nitric Oxide Improved Refractory Hypoxemia through Attenuation of Intrapulmonary Shunt. Am. J. Respir. Crit. Care Med. 2022;205:1114. doi: 10.1164/rccm.202107-1598IM.
    1. Rees S.E., Kjaergaard S., Perthorgaard P., Malczynski J., Toft E., Andreassen S. The automatic lung parameter estimator (ALPE) system: Non-invasive estimation of pulmonary gas exchange parameters in 10–15 min. J. Clin. Monit. Comput. 2002;17:43–52. doi: 10.1023/A:1015456818195.
    1. Andreassen S., Egeberg J., Schroter M.P., Andersen P.T. Estimation of pulmonary diffusion resistance and shunt in an oxygen status model. Comput. Methods Programs Biomed. 1996;51:95–105. doi: 10.1016/0169-2607(96)01765-8.
    1. Andreassen S., Rees S.E., Kjaergaard S., Thorgaard P., Winter S.M., Morgan C.J., Alstrup P., Toft E. Hypoxemia after coronary bypass surgery modeled by resistance to oxygen diffusion. Crit. Care Med. 1999;27:2445–2453. doi: 10.1097/00003246-199911000-00021.
    1. Kreit J.W. Volume Capnography in the Intensive Care Unit: Physiological Principles, Measurements, and Calculations. Ann. Am. Thorac. Soc. 2019;16:291–300. doi: 10.1513/AnnalsATS.201807-502CME.
    1. Bohr C. Ueber die Lungenathmung1. Skand. Arch. Physiol. 1891;2:236–268. doi: 10.1111/j.1748-1716.1891.tb00581.x.
    1. Enghoff H. Volumen inefficax. Upsala Lakaref Forh. 1938;44:191–218.
    1. Tang Y., Turner M.J., Baker A.B. Effects of alveolar dead-space, shunt and V/Q distribution on respiratory dead-space measurements. Br. J. Anaesth. 2005;95:538–548. doi: 10.1093/bja/aei212.
    1. Kreit J.W. Volume Capnography in the Intensive Care Unit: Potential Clinical Applications. Ann. Am. Thorac. Soc. 2019;16:409–420. doi: 10.1513/AnnalsATS.201807-502CME.
    1. Tusman G., Suarez-Sipmann F., Bohm S.H., Borges J.B., Hedenstierna G. Capnography reflects ventilation/perfusion distribution in a model of acute lung injury. Acta Anaesthesiol. Scand. 2011;55:597–606. doi: 10.1111/j.1399-6576.2011.02404.x.
    1. Blanch L., Lucangelo U., Lopez-Aguilar J., Fernandez R., Romero P.V. Volumetric capnography in patients with acute lung injury: Effects of positive end-expiratory pressure. Eur. Respir. J. 1999;13:1048–1054. doi: 10.1034/j.1399-3003.1999.13e19.x.
    1. Tusman G., Scandurra A., Bohm S.H., Suarez-Sipmann F., Clara F. Model fitting of volumetric capnograms improves calculations of airway dead space and slope of phase III. J. Clin. Monit. Comput. 2009;23:197–206. doi: 10.1007/s10877-009-9182-z.
    1. Beitler J.R., Thompson B.T., Matthay M.A., Talmor D., Liu K.D., Zhuo H., Hayden D., Spragg R.G., Malhotra A. Estimating dead-space fraction for secondary analyses of acute respiratory distress syndrome clinical trials. Crit. Care Med. 2015;43:1026–1035. doi: 10.1097/CCM.0000000000000921.
    1. Harris J.A., Benedict F.G. A Biometric Study of Human Basal Metabolism. Proc. Natl. Acad. Sci. USA. 1918;4:370–373. doi: 10.1073/pnas.4.12.370.
    1. Dianti J., Slutsky A.S., Goligher E.C. Validity of Empirical Estimates of the Ratio of Dead Space to Tidal Volume in ARDS. Respir. Care. 2021;66:559–565. doi: 10.4187/respcare.08246.
    1. Sinha P., Fauvel N.J., Singh S., Soni N. Ventilatory ratio: A simple bedside measure of ventilation. Br. J. Anaesth. 2009;102:692–697. doi: 10.1093/bja/aep054.
    1. Sinha P., Singh S., Hardman J.G., Bersten A.D., Soni N., Australia, New Zealand Intensive Care Society Clinical Trials Group Evaluation of the physiological properties of ventilatory ratio in a computational cardiopulmonary model and its clinical application in an acute respiratory distress syndrome population. Br. J. Anaesth. 2014;112:96–101. doi: 10.1093/bja/aet283.
    1. Sinha P., Sanders R.D., Soni N., Vukoja M.K., Gajic O. Acute respiratory distress syndrome: The prognostic value of ventilatory ratio--a simple bedside tool to monitor ventilatory efficiency. Am. J. Respir. Crit. Care Med. 2013;187:1150–1153. doi: 10.1164/rccm.201211-2037LE.
    1. Gattinoni L., Chiumello D., Rossi S. COVID-19 pneumonia: ARDS or not? Crit. Care. 2020;24:154. doi: 10.1186/s13054-020-02880-z.
    1. Bonifazi M., Romitti F., Busana M., Palumbo M.M., Steinberg I., Gattarello S., Palermo P., Saager L., Meissner K., Quintel M., et al. End-tidal to arterial PCO2 ratio: A bedside meter of the overall gas exchanger performance. Intensive Care Med. Exp. 2021;9:21. doi: 10.1186/s40635-021-00377-9.
    1. Kallet R.H., Lipnick M.S. End-Tidal-to-Arterial PCO2 Ratio as Signifier for Physiologic Dead-Space Ratio and Oxygenation Dysfunction in Acute Respiratory Distress Syndrome. Respir. Care. 2021;66:263–268. doi: 10.4187/respcare.08061.
    1. Frerichs I., Hahn G., Hellige G. Thoracic electrical impedance tomographic measurements during volume controlled ventilation-effects of tidal volume and positive end-expiratory pressure. IEEE Trans. Med. Imaging. 1999;18:764–773. doi: 10.1109/42.802754.
    1. Brown B.H., Leathard A., Sinton A., McArdle F.J., Smith R.W., Barber D.C. Blood flow imaging using electrical impedance tomography. Clin. Phys. Physiol. Meas. 1992;13:175–179. doi: 10.1088/0143-0815/13/A/034.
    1. Adler A., Arnold J.H., Bayford R., Borsic A., Brown B., Dixon P., Faes T.J., Frerichs I., Gagnon H., Garber Y., et al. GREIT: A unified approach to 2D linear EIT reconstruction of lung images. Physiol. Meas. 2009;30:S35–S55. doi: 10.1088/0967-3334/30/6/S03.
    1. Borges J.B., Suarez-Sipmann F., Bohm S.H., Tusman G., Melo A., Maripuu E., Sandstrom M., Park M., Costa E.L., Hedenstierna G., et al. Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse. J. Appl. Physiol. 2012;112:225–236. doi: 10.1152/japplphysiol.01090.2010.
    1. Kircher M., Elke G., Stender B., Hernandez Mesa M., Schuderer F., Dossel O., Fuld M.K., Halaweish A.F., Hoffman E.A., Weiler N., et al. Regional Lung Perfusion Analysis in Experimental ARDS by Electrical Impedance and Computed Tomography. IEEE Trans. Med. Imaging. 2021;40:251–261. doi: 10.1109/TMI.2020.3025080.
    1. Bluth T., Kiss T., Kircher M., Braune A., Bozsak C., Huhle R., Scharffenberg M., Herzog M., Roegner J., Herzog P., et al. Measurement of relative lung perfusion with electrical impedance and positron emission tomography: An experimental comparative study in pigs. Br. J. Anaesth. 2019;123:246–254. doi: 10.1016/j.bja.2019.04.056.
    1. Mauri T., Spinelli E., Scotti E., Colussi G., Basile M.C., Crotti S., Tubiolo D., Tagliabue P., Zanella A., Grasselli G., et al. Potential for Lung Recruitment and Ventilation-Perfusion Mismatch in Patients With the Acute Respiratory Distress Syndrome From Coronavirus Disease 2019. Crit. Care Med. 2020;48:1129–1134. doi: 10.1097/CCM.0000000000004386.
    1. Fossali T., Pavlovsky B., Ottolina D., Colombo R., Basile M.C., Castelli A., Rech R., Borghi B., Ianniello A., Flor N., et al. Effects of Prone Position on Lung Recruitment and Ventilation-Perfusion Matching in Patients with COVID-19 Acute Respiratory Distress Syndrome: A Combined CT Scan/Electrical Impedance Tomography Study. Crit. Care Med. 2022;50:723–732. doi: 10.1097/CCM.0000000000005450.
    1. Spinelli E., Kircher M., Stender B., Ottaviani I., Basile M.C., Marongiu I., Colussi G., Grasselli G., Pesenti A., Mauri T. Unmatched ventilation and perfusion measured by electrical impedance tomography predicts the outcome of ARDS. Crit. Care. 2021;25:192. doi: 10.1186/s13054-021-03615-4.
    1. Rabbani K.S., Kabir A.M. Studies on the effect of the third dimension on a two-dimensional electrical impedance tomography system. Clin. Phys. Physiol. Meas. 1991;12:393–402. doi: 10.1088/0143-0815/12/4/009.
    1. Pavlovsky B., Pesenti A., Spinelli E., Scaramuzzo G., Marongiu I., Tagliabue P., Spadaro S., Grasselli G., Mercat A., Mauri T. Effects of PEEP on regional ventilation-perfusion mismatch in the acute respiratory distress syndrome. Crit. Care. 2022;26:211. doi: 10.1186/s13054-022-04085-y.
    1. Mountain J.E., Santer P., O’Neill D.P., Smith N.M.J., Ciaffoni L., Couper J.H., Ritchie G.A.D., Hancock G., Whiteley J.P., Robbins P.A. Potential for noninvasive assessment of lung inhomogeneity using highly precise, highly time-resolved measurements of gas exchange. J. Appl. Physiol. 2018;124:615–631. doi: 10.1152/japplphysiol.00745.2017.
    1. Laghi F., Siegel J.H., Rivkind A.I., Chiarla C., DeGaetano A., Blevins S., Stoklosa J.C., Borg U.R., Belzberg H. Respiratory index/pulmonary shunt relationship: Quantification of severity and prognosis in the post-traumatic adult respiratory distress syndrome. Crit. Care Med. 1989;17:1121–1128. doi: 10.1097/00003246-198911000-00006.
    1. Kallet R.H., Alonso J.A., Pittet J.F., Matthay M.A. Prognostic value of the pulmonary dead-space fraction during the first 6 days of acute respiratory distress syndrome. Respir. Care. 2004;49:1008–1014.
    1. Kallet R.H., Zhuo H., Liu K.D., Calfee C.S., Matthay M.A., National Heart Lung. Blood Institute ARDS Network Investigators The association between physiologic dead-space fraction and mortality in subjects with ARDS enrolled in a prospective multi-center clinical trial. Respir. Care. 2014;59:1611–1618. doi: 10.4187/respcare.02593.
    1. Kallet R.H., Zhuo H., Ho K., Lipnick M.S., Gomez A., Matthay M.A. Lung Injury Etiology and Other Factors Influencing the Relationship Between Dead-Space Fraction and Mortality in ARDS. Respir. Care. 2017;62:1241–1248. doi: 10.4187/respcare.05589.
    1. Graf J., Perez R., Lopez R. Increased respiratory dead space could associate with coagulation activation and poor outcomes in COVID-19 ARDS. J. Crit. Care. 2022;71:154095. doi: 10.1016/j.jcrc.2022.154095.
    1. Siddiki H., Kojicic M., Li G., Yilmaz M., Thompson T.B., Hubmayr R.D., Gajic O. Bedside quantification of dead-space fraction using routine clinical data in patients with acute lung injury: Secondary analysis of two prospective trials. Crit. Care. 2010;14:R141. doi: 10.1186/cc9206.
    1. Morales-Quinteros L., Neto A.S., Artigas A., Blanch L., Botta M., Kaufman D.A., Schultz M.J., Tsonas A.M., Paulus F., Bos L.D., et al. Dead space estimates may not be independently associated with 28-day mortality in COVID-19 ARDS. Crit. Care. 2021;25:171. doi: 10.1186/s13054-021-03570-0.
    1. Morales-Quinteros L., Schultz M.J., Bringue J., Calfee C.S., Camprubi M., Cremer O.L., Horn J., van der Poll T., Sinha P., Artigas A., et al. Estimated dead space fraction and the ventilatory ratio are associated with mortality in early ARDS. Ann. Intensive Care. 2019;9:128. doi: 10.1186/s13613-019-0601-0.
    1. Siegel E.R., Zhuo H., Sinha P., Papolos A.I., Ni S.A., Vessel K., Belzer A., Minus E.B., Calfee C.S., Matthay M.A., et al. Ventilatory Ratio Is a Valuable Prognostic Indicator in an Observational Cohort of Patients With ARDS. Respir. Care. 2022;67:1075–1081. doi: 10.4187/respcare.09854.
    1. Monteiro A.C.C., Vangala S., Wick K.D., Delucchi K.L., Siegel E.R., Thompson B.T., Liu K.D., Sapru A., Sinha P., Matthay M.A., et al. The prognostic value of early measures of the ventilatory ratio in the ARDS ROSE trial. Crit. Care. 2022;26:297. doi: 10.1186/s13054-022-04179-7.
    1. Turzo M., Metzger K., Lasitschka F., Weigand M.A., Busch C.J. Inhibition of overexpressed Kv3.4 augments HPV in endotoxemic mice. BMC Pulm. Med. 2020;20:260. doi: 10.1186/s12890-020-01278-5.
    1. Leeman M., de Beyl V.Z., Biarent D., Maggiorini M., Melot C., Naeije R. Inhibition of cyclooxygenase and nitric oxide synthase in hypoxic vasoconstriction and oleic acid-induced lung injury. Pt 1Am. J. Respir. Crit. Care Med. 1999;159:1383–1390. doi: 10.1164/ajrccm.159.5.9807114.
    1. Johnston W.E., Vinten-Johansen J., Patel A., Tommasi E. Hypoxic pulmonary vasoconstrictor response with asymmetric oleic acid injury in the dog. Crit. Care Med. 1989;17:647–651. doi: 10.1097/00003246-198907000-00010.
    1. Adrie C., Holzmann A., Hirani W.M., Zapol W.M., Hurford W.E. Effects of intravenous Zaprinast and inhaled nitric oxide on pulmonary hemodynamics and gas exchange in an ovine model of acute respiratory distress syndrome. Anesthesiology. 2000;93:422–430. doi: 10.1097/00000542-200008000-00021.
    1. Melot C., Naeije R., Mols P., Hallemans R., Lejeune P., Jaspar N. Pulmonary vascular tone improves pulmonary gas exchange in the adult respiratory distress syndrome. Am. Rev. Respir. Dis. 1987;136:1232–1236. doi: 10.1164/ajrccm/136.5.1232.
    1. Jing L., Konoeda H., Keshavjee S., Liu M. Using nutrient-rich solutions and adding multiple cytoprotective agents as new strategies to develop lung preservation solutions. Am. J. Physiol. Lung Cell. Mol. Physiol. 2021;320:L979–L989. doi: 10.1152/ajplung.00516.2020.
    1. Tremblay L., Valenza F., Ribeiro S.P., Li J., Slutsky A.S. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J. Clin. Investig. 1997;99:944–952. doi: 10.1172/JCI119259.
    1. Kozian A., Schilling T., Freden F., Maripuu E., Rocken C., Strang C., Hachenberg T., Hedenstierna G. One-lung ventilation induces hyperperfusion and alveolar damage in the ventilated lung: An experimental study. Br. J. Anaesth. 2008;100:549–559. doi: 10.1093/bja/aen021.
    1. Spinelli E., Damia A., Damarco F., Mauri T. Pleural Pressure Working Group Online Meeting. 2022. Ventilator-Induced Lung Injury in the Excluded Lung during One-Lung Ventilation.
    1. Marongiu I., Spinelli E., Scotti E., Mazzucco A., Wang Y.M., Manesso L., Colussi G., Biancolilli O., Battistin M., Langer T., et al. Addition of 5% CO2 to Inspiratory Gas Prevents Lung Injury in an Experimental Model of Pulmonary Artery Ligation. Am. J. Respir. Crit. Care Med. 2021;204:933–942. doi: 10.1164/rccm.202101-0122OC.
    1. Tsang J.Y., Lamm W.J., Swenson E.R. Regional CO2 tension quantitatively mediates homeostatic redistribution of ventilation following acute pulmonary thromboembolism in pigs. J. Appl. Physiol. 2009;107:755–762. doi: 10.1152/japplphysiol.00245.2009.
    1. Shepard J.W., Jr., Hauer D., Miyai K., Moser K.M. Lamellar body depletion in dogs undergoing pulmonary artery occlusion. J. Clin. Investig. 1980;66:36–42. doi: 10.1172/JCI109832.
    1. Chinopoulos C., Adam-Vizi V. Mitochondrial Ca2+ sequestration and precipitation revisited. FEBS J. 2010;277:3637–3651. doi: 10.1111/j.1742-4658.2010.07755.x.
    1. Ichimura H., Parthasarathi K., Lindert J., Bhattacharya J. Lung surfactant secretion by interalveolar Ca2+ signaling. Am. J. Physiol. Lung. Cell Mol. Physiol. 2006;291:L596–L601. doi: 10.1152/ajplung.00036.2006.
    1. Kiefmann M., Tank S., Keller P., Bornchen C., Rinnenthal J.L., Tritt M.O., Schulte-Uentrop L., Olotu C., Goetz A.E., Kiefmann R. IDH3 mediates apoptosis of alveolar epithelial cells type 2 due to mitochondrial Ca(2+) uptake during hypocapnia. Cell Death Dis. 2017;8:e3005. doi: 10.1038/cddis.2017.403.
    1. Thomas H.M., 3rd, Garrett R.C. Strength of hypoxic vasoconstriction determines shunt fraction in dogs with atelectasis. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1982;53:44–51. doi: 10.1152/jappl.1982.53.1.44.
    1. Fox G.A., McCormack D.G. The pulmonary physician and critical care. 4. A new look at the pulmonary circulation in acute lung injury. Thorax. 1992;47:743–747. doi: 10.1136/thx.47.9.743.
    1. Turzo M., Vaith J., Lasitschka F., Weigand M.A., Busch C.J. Role of ATP-sensitive potassium channels on hypoxic pulmonary vasoconstriction in endotoxemia. Respir. Res. 2018;19:29. doi: 10.1186/s12931-018-0735-x.
    1. Kiefmann M., Tank S., Tritt M.O., Keller P., Heckel K., Schulte-Uentrop L., Olotu C., Schrepfer S., Goetz A.E., Kiefmann R. Dead space ventilation promotes alveolar hypocapnia reducing surfactant secretion by altering mitochondrial function. Thorax. 2019;74:219–228. doi: 10.1136/thoraxjnl-2018-211864.
    1. Laffey J.G., Engelberts D., Kavanagh B.P. Injurious effects of hypocapnic alkalosis in the isolated lung. Pt 1Am. J. Respir. Crit. Care Med. 2000;162:399–405. doi: 10.1164/ajrccm.162.2.9911026.
    1. Ando T., Mikawa K., Nishina K., Misumi T., Obara H. Hypocapnic alkalosis enhances oxidant-induced apoptosis of human alveolar epithelial type II cells. J. Int. Med. Res. 2007;35:118–126. doi: 10.1177/147323000703500113.
    1. Kolobow T., Spragg R.G., Pierce J.E. Massive pulmonary infarction during total cardiopulmonary bypass in unanesthetized spontaneously breathing lambs. Int. J. Artif. Organs. 1981;4:76–81. doi: 10.1177/039139888100400211.
    1. Langer T., Castagna V., Brusatori S., Santini A., Mauri T., Zanella A., Pesenti A. Short-term Physiologic Consequences of Regional Pulmonary Vascular Occlusion in Pigs. Anesthesiology. 2019;131:336–343. doi: 10.1097/ALN.0000000000002735.
    1. Broccard A.F., Hotchkiss J.R., Vannay C., Markert M., Sauty A., Feihl F., Schaller M.D. Protective effects of hypercapnic acidosis on ventilator-induced lung injury. Am. J. Respir. Crit. Care Med. 2001;164:802–806. doi: 10.1164/ajrccm.164.5.2007060.
    1. Sinclair S.E., Kregenow D.A., Lamm W.J., Starr I.R., Chi E.Y., Hlastala M.P. Hypercapnic acidosis is protective in an in vivo model of ventilator-induced lung injury. Am. J. Respir. Crit. Care Med. 2002;166:403–408. doi: 10.1164/rccm.200112-117OC.
    1. Mauri T., Spinelli E., Scotti E., Marongiu I., Mazzucco A., Wang Y.-M., Manesso L., Roma F., Biancolilli O., Battistin M., et al. American Thoracic Society International Conference. American Thoracic Society; New York, NY, USA: 2020. Occlusion of the Left Pulmonary Artery Induces Bilateral Lung Injury in Healthy Swines.
    1. Esbenshade A.M., Newman J.H., Lams P.M., Jolles H., Brigham K.L. Respiratory failure after endotoxin infusion in sheep: Lung mechanics and lung fluid balance. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1982;53:967–976. doi: 10.1152/jappl.1982.53.4.967.
    1. Permpikul C., Wang H.Y., Kriett J., Konopka R.G., Moser K.M., Spragg R.G. Reperfusion lung injury after unilateral pulmonary artery occlusion. Respirology. 2000;5:133–140. doi: 10.1046/j.1440-1843.2000.00239.x.
    1. Broccard A.F., Hotchkiss J.R., Kuwayama N., Olson D.A., Jamal S., Wangensteen D.O., Marini J.J. Consequences of vascular flow on lung injury induced by mechanical ventilation. Pt 1Am. J. Respir. Crit. Care Med. 1998;157:1935–1942. doi: 10.1164/ajrccm.157.6.9612006.
    1. Edmunds L.H., Jr., Holm J.C. Effect of inhaled CO2 on hemorrhagic consolidation due to unilateral pulmonary arterial ligation. J. Appl. Physiol. 1969;26:710–715. doi: 10.1152/jappl.1969.26.6.710.
    1. Strand M., Ikegami M., Jobe A.H. Effects of high PCO2 on ventilated preterm lamb lungs. Pediatr. Res. 2003;53:468–472. doi: 10.1203/01.PDR.0000049463.76133.8F.
    1. Spinelli E., Pesenti A., Lopez G., Damia A., Damarco F., Garbelli E., Dal Santo G., Caccioppola A., Giudici G., Figgiaconi V., et al. Inhaled CO2 vs. Hypercapnia Obtained by Low Tidal Volume or Instrumental Dead Space in Unilateral Pulmonary Artery Ligation: Any Difference for Lung Protection? Front. Med. 2022;9:901809. doi: 10.3389/fmed.2022.901809.
    1. Reyes A., Roca J., Rodriguez-Roisin R., Torres A., Ussetti P., Wagner P.D. Effect of almitrine on ventilation-perfusion distribution in adult respiratory distress syndrome. Am. Rev. Respir. Dis. 1988;137:1062–1067. doi: 10.1164/ajrccm/137.5.1062.
    1. Gallart L., Lu Q., Puybasset L., Umamaheswara Rao G.S., Coriat P., Rouby J.J. Intravenous almitrine combined with inhaled nitric oxide for acute respiratory distress syndrome. The NO Almitrine Study Group. Am. J. Respir. Crit. Care Med. 1998;158:1770–1777. doi: 10.1164/ajrccm.158.6.9804066.
    1. Rossaint R., Falke K.J., Lopez F., Slama K., Pison U., Zapol W.M. Inhaled nitric oxide for the adult respiratory distress syndrome. N. Engl. J. Med. 1993;328:399–405. doi: 10.1056/NEJM199302113280605.
    1. Bagate F., Tuffet S., Masi P., Perier F., Razazi K., de Prost N., Carteaux G., Payen D., Mekontso Dessap A. Rescue therapy with inhaled nitric oxide and almitrine in COVID-19 patients with severe acute respiratory distress syndrome. Ann. Intensive Care. 2020;10:151. doi: 10.1186/s13613-020-00769-2.
    1. Taylor R.W., Zimmerman J.L., Dellinger R.P., Straube R.C., Criner G.J., Davis J., Kenneth Kelly K.M., Smith T.C., Small R.J., Group ftINOiAS Low-Dose Inhaled Nitric Oxide in Patients With Acute Lung InjuryA Randomized Controlled Trial. JAMA. 2004;291:1603–1609. doi: 10.1001/jama.291.13.1603.
    1. Hermle G., Mols G., Zugel A., Benzing A., Lichtwarck-Aschoff M., Geiger K., Guttmann J. Intratidal compliance-volume curve as an alternative basis to adjust positive end-expiratory pressure: A study in isolated perfused rabbit lungs. Crit. Care Med. 2002;30:1589–1597. doi: 10.1097/00003246-200207000-00032.
    1. Brower R.G., Lanken P.N., MacIntyre N., Matthay M.A., Morris A., Ancukiewicz M., Schoenfeld D., Thompson B.T., The National Heart. Lung, and Blood Institute ARDS Clinical Trials Network Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N. Engl. J. Med. 2004;351:327–336.
    1. Mercat A., Richard J.C., Vielle B., Jaber S., Osman D., Diehl J.L., Lefrant J.Y., Prat G., Richecoeur J., Nieszkowska A., et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: A randomized controlled trial. JAMA. 2008;299:646–655. doi: 10.1001/jama.299.6.646.
    1. Meade M.O., Cook D.J., Guyatt G.H., Slutsky A.S., Arabi Y.M., Cooper D.J., Davies A.R., Hand L.E., Zhou Q., Thabane L., et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: A randomized controlled trial. JAMA. 2008;299:637–645. doi: 10.1001/jama.299.6.637.
    1. Beitler J.R., Sarge T., Banner-Goodspeed V.M., Gong M.N., Cook D., Novack V., Loring S.H., Talmor D., Group EP-S Effect of Titrating Positive End-Expiratory Pressure (PEEP) With an Esophageal Pressure-Guided Strategy vs an Empirical High PEEP-Fio2 Strategy on Death and Days Free From Mechanical Ventilation Among Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA. 2019;321:846–857.
    1. Ralph D.D., Robertson H.T., Weaver L.J., Hlastala M.P., Carrico C.J., Hudson L.D. Distribution of ventilation and perfusion during positive end-expiratory pressure in the adult respiratory distress syndrome. Am. Rev. Respir. Dis. 1985;131:54–60.
    1. Karbing D.S., Panigada M., Bottino N., Spinelli E., Protti A., Rees S.E., Gattinoni L. Changes in shunt, ventilation/perfusion mismatch, and lung aeration with PEEP in patients with ARDS: A prospective single-arm interventional study. Crit. Care. 2020;24:111. doi: 10.1186/s13054-020-2834-6.
    1. Perier F., Tuffet S., Maraffi T., Alcala G., Victor M., Haudebourg A.F., De Prost N., Amato M., Carteaux G., Mekontso Dessap A. Effect of Positive End-Expiratory Pressure and Proning on Ventilation and Perfusion in COVID-19 Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2020;202:1713–1717. doi: 10.1164/rccm.202008-3058LE.
    1. Guerin C., Reignier J., Richard J.C., Beuret P., Gacouin A., Boulain T., Mercier E., Badet M., Mercat A., Baudin O., et al. Prone positioning in severe acute respiratory distress syndrome. N. Engl. J. Med. 2013;368:2159–2168. doi: 10.1056/NEJMoa1214103.
    1. Gattinoni L., Vagginelli F., Carlesso E., Taccone P., Conte V., Chiumello D., Valenza F., Caironi P., Pesenti A., Prone-Supine Study Group Decrease in PaCO2 with prone position is predictive of improved outcome in acute respiratory distress syndrome. Crit. Care Med. 2003;31:2727–2733. doi: 10.1097/01.CCM.0000098032.34052.F9.
    1. Pierrakos C., van der Ven F., Smit M.R., Hagens L.A., Paulus F., Schultz M.J., Bos L.D.J. Prone Positioning Decreases Inhomogeneity and Improves Dorsal Compliance in Invasively Ventilated Spontaneously Breathing COVID-19 Patients-A Study Using Electrical Impedance Tomography. Diagnostics. 2022;12:2281. doi: 10.3390/diagnostics12102281.
    1. Slobod D., Spinelli E., Scaramuzzo G., Lissoni A., Grasselli G., Mauri T. Redistribution of Perfusion by Prone Positioning Improves Shunt in a Patient with Unilateral Lung Injury. Am. J. Respir. Crit. Care Med. 2022;206:e76–e78. doi: 10.1164/rccm.202206-1060IM.

Source: PubMed

3
Abonnere