Nuclear magnetic resonance spectroscopy data of isolated compounds from Acacia farnesiana (L) Willd fruits and two esterified derivatives

Erika Hernández-García, Abraham García, Francisco G Avalos-Alanís, Verónica M Rivas-Galindo, Claudia Delgadillo-Puga, María Del Rayo Camacho-Corona, Erika Hernández-García, Abraham García, Francisco G Avalos-Alanís, Verónica M Rivas-Galindo, Claudia Delgadillo-Puga, María Del Rayo Camacho-Corona

Abstract

In the present article we describe the spectroscopic data of 1H and 13C Nuclear Magnetic Resonance of 11 compounds including: Nine natural products from the hexanic-chloroformic and methanolic extracts of Acacia farnesiana fruit and two esterified derivatives (22E-stimasta-5,22-dien- 3β-acetyl and methyl 3,4,5-triacetyloxybenzoate). Data linked to the research work entitled "Chemical composition of fruits of Acacia farnesiana (L) Willd and its activity against Mycobacterium tuberculosis and dysentery bacteria" (Hernández et al., 2019) [1].

Figures

Fig. 1
Fig. 1
22E-stimasta-5,22-dien-3β-ol, NMR 1H (400 MHz CDCl3) δ ppm: 0.69 (s, 3H, Me-18), 0.79 (d, J=6.92 Hz, 3H, Me-27), 0.80 (t, J=7.1 Hz, 3H, Me-29), 0.83 (d, J=7.32 Hz, 3H, Me-26), 0.86 (d, J=3.8 Hz, 2H, H-28), 0.92 (d, J=6.4 Hz, 2H, H-9, H-24), 1.01 (s, 3H, Me-19), 1.02 (d, J=7. 72 Hz, 3H, Me-21), 1.10 (m, 1H, H-14), 1.04 (m, 2H, H-1), 1.07 (m, 2H, H-15), 1.11 (m, 1H, H-14), 1.13 (m, 1H, H-17), 1.16 (m, 1H, H-12), 1.28 (m, 1H, H-16), 1.41 (m, 1H, H-20), 1.53 (m, 2H, H-7), 1.54 (m, 1H, H-11), 1.83 (m, 1H, H-25), 1.84 (m, 2H, H-2), 1.85 (m, 1H, H-16), 1.99 (m, 1H, H-8), 2.0 (m, 2H, H-12), 2.28 (m, 2H, H-4), 3.52 (m, 1H, H-3), 5.01 (dd, J=15.1, 8.6 Hz, 1H, H-23), 5.15 (dd, J=15.1, 8.5 Hz, 1H, H-22), 5.35 (brd, J=4.72 Hz, 1H, H-6).
Fig. 2
Fig. 2
22E-stimasta-5,22-dien-3β-ol, NMR 13C (100 MHz, CDCl3) δ ppm: 12.05 (C18), 12.25 (C29), 19.03 (C27), 19.40 (C19), 21.08 (C11, C26), 21.21 (C21), 24.36 (C15), 25.41 (C28), 28.92 (C16), 31.67 (C2), 31.88 (C7, C8), 31.90 (C25), 36.51 (C10), 37.26 (C1), 39.78 (C12), 40.49 (C20), 42.22 (C13), 42.31 (C4), 50.14 (C9), 51.24 (C24), 55.96 (C17), 56.87 (C14), 71.81 (C3), 121.71 (C6), 129.28 (C23), 138.32 (C22), 140.76 (C5).
Fig. 3
Fig. 3
22E-stimasta-5,22-dien-3β-acetyl, NMR 1H (400 MHz, CDCl3) δ ppm: 0.69 (s, 3H, Me-18), 0.79 (d, J=6.96 Hz, 3H, Me-27) 0.80 (t, J=7.04 Hz, 3H, Me-29), 0.82 (d, J=1.74 Hz, 2H, H-28), 0.83 (d, J=7.2 Hz, 3H, Me-26),), 0.91 (m, 1H, H-24) 0.92 (d, J=6.54 Hz, 1H, H-9), 1.02 (s, 3H, Me-19), 1.021 (d, J=6.36 Hz, 3H, Me-21), 1.12 (m, 1H, H-14), 1.13 (m, 2H, H-15), 1.16 (m, 2H, H-1), 1.17 (m, 1H, H-17), 1.18 (m, 1H, H-12), 1.28 (m, 1H, H-16), 1.42 (m, 1H, H-20), 1.53 (m, 2H, H-11), 1.54 (m, 2H, H-7), 1.83 (m, 1H, H-25), 1.84 (m, 2H, H-2), 1.87 (m, 1H, H-16), 1.98 (m, 1H, H-8), 1.99 (m, 2H, H-12), 2.03 (s, 3H, CH3CO), 2.32 (m, 2H, H-4), 4.6 (m, 1H, H-3), 5.01 (dd, J=15.16, 8.64 Hz, 1H, H-23), 5.15 (dd, J=15.16, 8.6 Hz, 1H, H-22), 5.37 (brd, J=4.64, 1H, H-6).
Fig. 4
Fig. 4
22E-stimasta-5,22-dien-3β-acetyl. NMR 13C (100 MHz, CDCl3) δ ppm: 12.04 (C18), 12.24(C29), 18.98 (C27), 19.30 (C19), 21.01 (C11), 21.08 (C26), 21.21 (C21), 21.44 (CH3CO), 24.35 (C15), 25.40 (C28), 27.77 (C2), 28.90 (C16), 31.86 (C7, C8), 31.88 (C25), 36.59 (C10), 36.99 (C1), 38.12 (C4), 39.62 (C12), 40.49 (C20), 42.20 (C13), 50.05 (C9), 51.23 (C24), 55.93 (C17), 56.78 (C14), 74.0 (C3), 122.63 (C6), 129.28 (C23), 138.31 (C22), 139.65 (C5), 170.56 (CH3CO).
Fig. 5
Fig. 5
Tetracosanoic acid (2S)-2, 3-dihydroxypropyl ester, NMR 1H (400 MHz, CDCl3) δ ppm: 0.88 (t, J=6.78 Hz, 3H, Me-24), 1.25 (sa, 38H, (CH2)19, C4-C22), 1.50 (sa, 1H, OH-3´), 1.63 (m, 4H, H-3, H-23), 2.04 (s, 1H, OH-2´), 2.35 (t, J=7.58 Hz, 2H, H-2), 3.60 (dd, J=11.46, 5.78 Hz, 1H, H-3´β), 3.70 (dd, J=11.46, 3.98 Hz, 1H, H-3´α), 3.94 (m, 1H, H-2´), 4.15 (dd, J=11.68, 6.12 Hz, 1H, H-1´β), 4.21 (dd, J=11.64, 4.6 Hz, 1H, H-1´α).
Fig. 6
Fig. 6
Tetracosanoic acid (2S)-2, 3-dihydroxypropyl ester, NMR 13C (100 MHz, CDCl3) δ ppm: 14.35 (C24), 22.91 (C23), 25.13 (C3), 29.34 (C4), 29.46 (C5), 29.58 (C8), 29.67 (C9), 29.82 (C21), 29.86 (C6), 29.88 (C7), 29.92 (C10-C20), 32.14 (C22), 34.37 (C2), 63.53 (C3´), 65.38 (C1´), 70.48 (C2´), 174.61 (C1).
Fig. 7
Fig. 7
Stigmasta-5,22-dien-3β-O-D-glucopyranoside, NMR 1H (400 MHz, DMSO-d6) δ ppm: 0.64 (s, 3H, Me-18), 0.79 (t, J= 7.40 Hz, 3H, Me-29), 0.80 (d, J= 7.64 Hz, 3H, Me-27), 0.81 (m, 1H, H-9), 0.83 (m, 1H, H-24), 0.89 (d, J= 6.24 Hz, 3H, Me-26), 0.95 (s, 3H, Me-19), 0.99 (d, J= 6.36 Hz, 3H, Me-21), 1.03 (m, 1H, H-17), 1.07 (m, 2H, H-15), 1.09 (m, 1H, H-9), 1.14 (m, 2H, H-12), 1.19 (d, J= 7.1 Hz, 1H, H-4), 1.22 (m, 2H, H-11), 1.37 (m, 2H, H-2), 1.40 (m, 1H, H-20), 1.46 (m, 1H, H-25), 1.49 (m, 2H, H-7), 1.62 (dd, J= 6.4, 11.6, 1H, H-8), 1.78 (m, 1H, H-16), 1.80 (m, 1H, H-4), 1.93 (m, 1H, H-16), 2.11 (m, 1H, H-1), 2.36 (dd, J= 3.0, 13.3 Hz, 1H, H-1), 2.88 (m, 1H, H-2´), 3.01 (m, 2H, H-5´), 3.04 (m, 2H, 4´), 3.11 (m, 1H, H-3´), 3.46 (m, 1H, H-3), 3.48 (m, 1H, H-6´a), 3.63 (dd, J= 10.7, 5.4 Hz, 1H, H-6´b), 4.21 (d, J= 7.72 Hz, 1H, H-1´), 4.45 (t, J= 5.6 Hz, 1H, OH-6´), 4.88 (sa, 1H, OH-4´), 4.89 (sa, 1H, OH-2´), 4.91 (d, J = 4.5 Hz, 1H, OH-3´), 5.01 (dd, J= 15, 8.72, Hz, 1H, H-23), 5.15 (dd, J= 15.04, 8.62 Hz, 1H, H-22), 5.32 (sa, 1H, H-6).
Fig. 8
Fig. 8
Stigmasta-5,22-dien-3β-O-D-glucopyranoside. NMR 13C (100 MHz, DMSO-d6): δ (ppm): 11.69 (C29), 11.80 (C18), 18.63 (C21), 18.85 (C27), 18.95 (C19), 19.12 (C26), 22.62 (C11), 23.88 (C28), 24.88 (C15), 29.26 (C16), 31.38 (C7, C8), 31.43 (C24, C25), 33.35 (C2), 35.49 (C20), 36.23 (C10), 36.83 (C4), 38.30 (C1), 39 (C12), 41.87 (C13), 49.61 (C9), 55.43 (C17), 56.27 (C14), 61.11 (C6´), 70.12 (C2´), 73.48 (C4´), 76.76 (C5´), 76.92 (C3´), 76.98 (C3), 100.78 (C1´), 121.24 (C6), 130.74 (C23), 138.06 (C22), 140.47 (C5).
Fig. 9
Fig. 9
Stigmasta-5,22-dien-3β-O-D-tetraacetylglucopyranoside, NMR 1H (400 MHz, CDCl3) δ ppm: 0.67 (s, 3H, Me-18), 0.80 (t, J=7.24 Hz, 3H, Me-29), 0.83 (d, J=7.04 Hz, 3H, Me-27), 0.91 (d, J=6.44 Hz, 3H, Me-26), 0.98 (s, 3H, Me-19), 1.02 (d, J=6.64 Hz, 3H, Me-21), 2.00 (s, 3H, CH3CO-3´), 2.02 (s, 3H, CH3CO-2´), 2.05 (s, 3H, CH3CO-4´), 2.08 (s, 3H, CH3CO-6´), 3.48 (m, 1H, H-3), 3.67 (m, 1H, H-2´), 4.1 (dd, J=12.2, 2.88 Hz, 1H, H-6´a), 4.26 (dd, J=12.22, 4.82 Hz, 1H, H-6´b), 4.59 (d, J=8.0 Hz, 1H, H-1´), 4.96 (t, J= 9.48 Hz, 1H, H-3´), 5.03 (dd, J= 14.16, 5.56 Hz, 1H, H-23), 5.07 (t, J= 9.68 Hz, 1H, H-5´), 5.13 (dd, J=15.16, 6.52 Hz, 1H, H-22), 5.20 (t, J=9.52 Hz, 1H, H-4´) 5.36 (da, J=4.84 Hz, 1H, H-6).
Fig. 10
Fig. 10
Stigmasta-5,22-dien-3β-O-D-tetraacetylglucopyranoside. NMR 13C (100 MHz, CDCl3) δ ppm: 11.89(C29), 12.02 (C18),18.81 (C21),19.07(C27), 19.39 (C19), 19.85 (C26), 20.65 (CH3CO-6´), 20.68 (CH3CO-4´), 20.76 (CH3CO-3´), 20.80 (CH3CO-2´), 21.08 (C11), 23.10 (C28), 24.33 (C15), 28.27 (C16), 29.48 (C24), 31.90 (C8, C25), 31.98 (C7), 33.98 (C-2), 36.16 (C20), 36.76 (C10), 37.23 (C1), 38.95 (C4), 39.77 (C12), 42.36 ( C13), 50.20 (C9), 56.09 (C17), 56.79 (C14), 62.15 (C6´), 68.53 (C4´), 71.54 (C3´), 71.73 (C5´), 72.96 (C3), 80.12 (C2´), 99.68 (C1´), 122.20 (C6), 129.34 (C23), 138.32 (C22), 140.40 (C5), 169.34 (CH3CO-3´), 169.44 (CH3CO-4´), 170.40 (CH3CO-2´), 170.74 (CH3CO-6´).
Fig. 11
Fig. 11
Methyl gallate, NMR 1H (400 MHz, Acetone-d6) δ ppm: 3.78 (s, 3H, OMe), 7.11 (s, 2H, H-2, H-6), 8.17 (s, 3H, OH).
Fig. 12
Fig. 12
Methyl gallate, NMR 13C (100 MHz, Acetone-d6) δ ppm: 51.01 (OMe), 108.92 (C2, C6), 120.93 (C1), 137.82 (C4), 145.16 (C3, C5), 166.27 (COOR).
Fig. 13
Fig. 13
Methyl 3,4,5-triacetyloxybenzoate, NMR 1H (400 MHz, CDCl3) δ ppm: 2.32 (s, 9H, 3x CH3CO), 3.92 (s, 3H, OMe), 7.82 (s, H-2, H 6).
Fig. 14
Fig. 14
Methyl 3,4,5-triacetyloxybenzoate, NMR 13C (100 MHz, CDCl3) δ ppm: 20.17 (CH3CO-4), 20.58 (CH3CO-3, CH3CO-5), 52.57 (OCH3), 122.22 (C2, C6), 128.29 (C1), 138.58 (C4), 143.39 (C3, C5), 164.90 (CH3CO-1), 166.44 (CH3CO-4), 167.61 (CH3CO-3, CH3CO-5).
Fig. 15
Fig. 15
Gallic acid, NMR 1H (400 MHz, Acetone-d6) δ ppm: 3.08 (sa, 4H, OH-4), 7.14 (s, 2H, H-2, H-6), 8.22 (sa, 2H, OH-3, OH-5).
Fig. 16
Fig. 16
Gallic acid, NMR 13C (100 MHz, Acetone-d6) δ ppm: 109.22 (C2, C6), 121.15 (C1), 137.77 (C4), 145.11 (C3, C5), 166.82 (COOH).
Fig. 17
Fig. 17
(2S) -Naringenin 7-O-β-D-glucopyranoside, NMR 1H (400 MHz, DMSO-d6) δ ppm: 2.73 (dd, J= 17.1, 2.62 Hz, 1H, H-3β), 3.14 (m, 1H, H-3α), 3.22 (m, 2H, H-4´´, H-2´´), 3.37 (m, 2H, H-3´´, H-5´´), 3.42 (dd, J= 11.68, 5.64 Hz, 1H, H-6a´´), 3.65 (dd, J= 11.04, 4.68 Hz, 1H, H-6b´´), 4.54 (t, J= 5.56, 1H, OH-6”), 4.95 (d, J= 7.4 Hz, 1H, H-1´´), 5.01 (d, J= 5.2 Hz, 1H, OH-4´´), 5.08 (d, J= 4.72 Hz, 1H, OH-3´´), 5.33 (d, J= 4.88 Hz, 1H, OH-2´´), 5.50 (dd, J= 12.6, 2.48 Hz, 1H, H-2), 6.13 (d, J= 2.2, 1H, H-6), 6.15 (d, J= 1.96, 1H, H-8), 6.79 (d, J= 8.4 Hz, 2H, H-3´, H-5´), 7.32 (d, J= 8.44 Hz, 2H, H-2´, H-6´), 9.59 (s, 1H, OH-4´), 12.05 (s, 1H, OH-5).
Fig. 18
Fig. 18
(2S) -Naringenin 7-O-β-D-glucopyranoside. NMR 13C (100 MHz, DMSO-d6) δ ppm: 42.55 (C3), 61.05 (C6´´), 69.98 (C4´´), 73.50 (C2´´), 76.80 (C3´´), 77.56 (C5´´), 79.13 (C2), 95.92 (C8), 96.97 (C6), 100.10 (C1´´), 103.73 (C10), 115.65 (C3´, C5´), 128.89 (C2´, C6´), 129.11 (C1´), 158.28 (C4´), 163.25 (C5), 163.41 (C9), 165.79 (C7), 197. 67 (C4).
Fig. 19
Fig. 19
Pinitol, NMR 1H (400 MHz, D2O) δ (ppm): 3.18 (t, J=9.64 Hz, 1H, H-6), 3.44 (s, 3H, OCH3), 3.49 (t, J=9.64 Hz, 1H, H-1), 3.55 (dd, J=9.94, 2.38 Hz, 1H, H-2), 3.65 (dd, J=9.98, 2.42 Hz, 1H, H-5), 3.84 (m, 2H, H-3, H-4).
Fig. 20
Fig. 20
Pinitol. NMR 13C (100 MHz, D2O) δ (ppm): 59.67 (OCH3), 69.76 (C5), 70.47 (C2), 71.40 (C3), 71.61 (C4), 72.07 (C1), 82.72 (C6).
Fig. 21
Fig. 21
Sucrose, NMR 1H (400 MHz, D2O) δ (ppm): 3.43 (t, J=9.42 Hz, 1H, H-4), 3.52 (dd, J=10, 3.84 Hz, 1H, H-2), 3.63 (s, 2H, H-1´), 3.72 (t, J=9.56 Hz, 1H, H-3), 3.78 (d, J=2.96 Hz, 2H, H-6), 3.79 (d, J=2.8 Hz, 2H, H-6´), 3.83 (m, 1H, H-5), 3.86 (m, 1H, H-5´), 4.01 (t, J= 8.56 Hz, 1H, H-4´), 4.18 (d, J=8.76 Hz, 1H, H-3´), 5.38 (d, J=3.88 Hz, 1H, H-1).
Fig. 22
Fig. 22
Sucrose. NMR 13C (100 MHz, D2O) δ (ppm): 62.59 (C6), 63.82 (C1´), 64.84 (C6´), 71.70 (C4), 73.55 (C2), 74.88 (C5), 75.05 (C3), 76.47 (C4´), 78.88 (C3´), 83.85 (C5´), 94.66 (C1), 106.17 (C2´).

References

    1. Hernández E., Garza E., García A., Avalos F.G., Rivas V.M., Rodríguez J., Alcántar V.M., Delgadillo C., Camacho M.R. Chemical composition of Acacia farnesiana (L) wild fruits and its activity against Mycobacterium tuberculosis and dysentery bacteria. J. Ethnopharmacol. 2019;230:74–80.

Source: PubMed

3
Abonnere