Goats' Feeding Supplementation with Acacia farnesiana Pods and Their Relationship with Milk Composition: Fatty Acids, Polyphenols, and Antioxidant Activity

Claudia Delgadillo-Puga, Mario Cuchillo-Hilario, Luis León-Ortiz, Amairani Ramírez-Rodríguez, Andrea Cabiddu, Arturo Navarro-Ocaña, Aurora Magdalena Morales-Romero, Omar Noel Medina-Campos, José Pedraza-Chaverri, Claudia Delgadillo-Puga, Mario Cuchillo-Hilario, Luis León-Ortiz, Amairani Ramírez-Rodríguez, Andrea Cabiddu, Arturo Navarro-Ocaña, Aurora Magdalena Morales-Romero, Omar Noel Medina-Campos, José Pedraza-Chaverri

Abstract

Background: Research efforts have focused on the evaluation of the bioactive quality of animal products (milk, cheese, meat, and other by-products) contrasting various feeding strategies coming from different ecological zones. The study aimed to describe the fatty acids (FA), polyphenols (P), bioactive compounds (BC), and antioxidant activity (AA) of goat's milk.

Methods: Dairy goats were fed with five systems: (1) Grazing; (2) conventional diet (CD); (3) CD + 10% of Acacia farnesiana (AF) pods; (4) CD + 20% AF; and (5) CD + 30% AF. The fatty acid profile, health promoting and thrombogenic indexes were calculated. Milk extracts were evaluated by HPLC to determent phenolic compounds (gallic, caffeic, chlorogenic, and ferulic acids, catechin, epicatechin, and quercetin). Antioxidant activity of goat's milk extract was evaluated using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•), oxygen radical absorbance capacity (ORAC), and the ferric reducing antioxidant power (FRAP) assays.

Results: Conventional diet showed the highest content of polyunsaturated fatty acids while grazing showed the best n-6:n-3 and the linoleic:alpha linolenic acid ratio. Similarly, grazing and AF boosted the polyphenol content.

Conclusions: Acacia farnesiana inclusion in the goats' diets increased the presence of bioactive compounds and the antioxidant activity while diminishing the cholesterol content of goat's milk.

Keywords: Acacia farnesiana pods; bioactive compounds; fatty acids; milk; radical scavenging.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Total polyphenols of freeze-dried milk from goats fed conventional diet versus diets supplemented with graded levels of Acacia farnesiana pods (AF). CD = Conventional diet. a,b,c,d Means with different letters indicate differences (p < 0.05) among treatments.
Figure 2
Figure 2
Bioactive compounds (AD) in milk from goats fed conventional diet versus diets supplemented with graded levels of Acacia farnesiana pods (AF) by HPLC. CD = Conventional diet. a,b,c,d Means with different letters indicate differences (p < 0.05) among treatments.
Figure 3
Figure 3
Total antioxidant activity of milk extracts from goat’s fed under grazing system, conventional diet (CD), or CD supplemented with different levels of Acacia farnesiana pods (AF). DPPH• scavenging capacity (A). Oxygen radical absorbance capacity (ORAC) assay (B) and ferric-reducing antioxidant power (FRAP) assay (C). a,b,c,d Means with different letters indicate differences (p < 0.05) among treatments.
Figure 4
Figure 4
Pearson correlations among antioxidant activity and bioactive compounds concentrations from goat’s milk fed under grazing system (G), conventional diet (CD), or CD supplemented with different levels (10%, 20%, and 30%) of Acacia farnesiana pods (AF). DPPH• scavenging capacity assay (A1A4). Oxygen radical absorbance capacity (ORAC) assay (B1B4) and ferric-reducing antioxidant power (FRAP) assay (C1C4).

References

    1. Cuchillo H.M., Puga D.C., Wrage-Mönning N., Espinosa M.J.G., Montaño B.S., Navarro-Ocaña A., Ledesma J.A., Díaz M.M., Pérez-Gil R.F. Chemical composition, antioxidant activity and bioactive compounds of vegetation species ingested by goats on semiarid rangelands. J. Anim. Feed Sci. 2013;22:106–115. doi: 10.22358/jafs/66000/2013.
    1. Cuchillo H.M., Puga D.C., Navarro O.A., Pérez-Gil R. Antioxidant activity, bioactive polyphenols in Mexican goats’ milk cheeses on summer grazing. J. Dairy Res. 2010;77:20–26. doi: 10.1017/S0022029909990161.
    1. Cuchillo H.M., Puga D.C., Wrage N., Pérez-Gil R. Feeding goats on scrubby Mexican rangeland and pasteurization: Influences on milk and artisan cheese quality. Trop. Anim. Health Prod. 2010;42:1127–1134. doi: 10.1007/s11250-010-9535-0.
    1. Delgadillo P., Sánchez M., Nahed T., Cuchillo H., Díaz M., Solis Z., Reyes H., Castillo D. Fatty acid content, health and risk indices, physicochemical composition, and somatic cell counts of milk from organic and conventional farming systems in tropical south-eastern Mexico. Trop. Anim. Health Prod. 2014;46:883–888. doi: 10.1007/s11250-014-0581-x.
    1. Delgadillo P., Castillo D., Cuchillo H., Díaz M., Pérez-Gil R., Montaño B. Radical scavenging activity and health and risk fatty acid indices of soft goats’ milk cheeses. Arch. Latinoam. Prod. Anim. 2015;23:21–26.
    1. Chávez-Servín J., Andrade-Montemayor H., Velázquez Vázquez C., Aguilera Barreyro A., García-Gasca T., Ferríz Martínez R., Olvera Ramírez A., de la Torre-Carbot K. Effects of feeding system, heat treatment and season on phenolic compounds and antioxidant capacity in goat milk, whey and cheese. Small Rumin. Res. 2018;160:54–58. doi: 10.1016/j.smallrumres.2018.01.011.
    1. Santiago-López L., Aguilar-Toalá J., Hernández-Mendoza A., Vallejo-Cordoba B., Liceaga A., González-Córdova A. Invited review: Bioactive compounds produced during cheese ripening and health effects associated with aged cheese consumption. J. Dairy Sci. 2018;101:3742–3757. doi: 10.3168/jds.2017-13465.
    1. Goetsch A.L., Zeng S.S., Gipson T.A. Factors affecting goat milk production and quality. Small Rumin. Res. 2011;101:55–63. doi: 10.1016/j.smallrumres.2011.09.025.
    1. Ventto L., Leskinen H., Kairenius P., Stefański T., Bayat A.R., Vilkki J., Shingfield K.J. Diet-induced milk fat depression is associated with alterations in ruminal biohydrogenation pathways and formation of novel fatty acid intermediates in lactating cows. Br. J. Nutr. 2017;117:364–376. doi: 10.1017/S0007114517000010.
    1. Benbrook C.M., Davis D.R., Heins B.J., Latif M.A., Leifert C., Peterman L., Butler G., Faergeman O., Abel-Caines S., Baranski M. Enhancing the fatty acid profile of milk through forage-based rations, with nutrition modeling of diet outcomes. Food Sci. Nutr. 2018;6:681–700. doi: 10.1002/fsn3.610.
    1. Galina M.A., Osnaya F., Cuchillo H.M., Haenlein G.F.W. Cheese quality from milk of grazing or indoor fed Zebu cows and Alpine crossbred goats. Small Rumin. Res. 2007;71:264–272. doi: 10.1016/j.smallrumres.2006.07.011.
    1. Pajor F., Egerszegi I., Steiber O., Bodnár Á., Póti P. Effect of marine algae supplementation on the fatty acid profile of milk of dairy goats kept indoor and on pasture. J. Anim. Feed Sci. 2019;28:169–176. doi: 10.22358/jafs/109955/2019.
    1. Tsiplakou E., Zervas G. The effect of fish and soybean oil inclusion in goat diet on their milk and plasma fatty acid profile. Livest. Sci. 2013;155:236–243. doi: 10.1016/j.livsci.2013.05.020.
    1. Klir Z., Castro-Montoya J.M., Novoselec J., Molkentin J., Domacinovic M., Mioc B., Dickhoefer U., Antunovic Z. Influence of pumpkin seed cake and extruded linseed on milk production and milk fatty acid profile in Alpine goats. Animal. 2017;11:1772–1778. doi: 10.1017/S175173111700060X.
    1. Kliem K.E., Humphries D.J., Reynolds C.K., Morgan R., Givens D.I. Effect of oilseed type on milk fatty acid composition of individual cows, and also bulk tank milk fatty acid composition from commercial farms. Animal. 2017;11:354–364. doi: 10.1017/S1751731116001403.
    1. Cabiddu A., Addis M., Fiori M., Spada S., Decandia M., Molle G. Pros and cons of the supplementation with oilseed enriched concentrates on milk fatty acid profile of dairy sheep grazing Mediterranean pastures. Small Rumin. Res. 2017;147:63–72. doi: 10.1016/j.smallrumres.2016.11.019.
    1. Ullah R., Nadeem M., Imran M., Taj Khan I., Shahbaz M., Mahmud A., Tayyab M. Omega fatty acids, phenolic compounds, and lipolysis of cheddar cheese supplemented with chia (Salvia hispanica L.) oil. J. Food Process. Preserv. 2018;42:e13566. doi: 10.1111/jfpp.13566.
    1. Cabiddu A., Salis L., Tweed J., Molle G., Decandia M., Lee M. The influence of plant polyphenols on lipolysis and biohydrogenation in dried forages at different phenological stagesin vitro study. J. Sci. Food Agric. 2010;90:829–835. doi: 10.1002/jsfa.3892.
    1. De Neve N., Vlaeminck B., Gadeyne F., Claeys E., van der Meeren P., Fievez V. Promising perspectives for ruminal protection of polyunsaturated fatty acids through polyphenol-oxidase-mediated crosslinking of interfacial protein in emulsions. Animal. 2018;12:2539–2550. doi: 10.1017/S1751731118000423.
    1. Herrero M., Havlík P., Valin H., Notenbaert A., Rufino M.C., Thornton P.K., Blümmel M., Weiss F., Grace D., Obersteiner M. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl. Acad. Sci. USA. 2013;110:20888–20893. doi: 10.1073/pnas.1308149110.
    1. Delgadillo Puga C., Cuchillo-Hilario M., Navarro Ocaña A., Medina-Campos O.N., Nieto Camacho A., Ramírez Apan T., López-Tecpoyotl Z.G., Díaz Martínez M., Álvarez-Izazaga M.A., Cruz Martínez Y.R., et al. Phenolic Compounds in Organic and Aqueous Extracts from Acacia farnesiana Pods Analyzed by ULPS-ESI-Q-oa/TOF-MS. In Vitro Antioxidant Activity and Anti-Inflammatory Response in CD-1 Mice. Molecules. 2018;23:2386. doi: 10.3390/molecules23092386.
    1. Delgadillo Puga C., Cuchillo H., Espinosa J.G., Medina O., Molina E., Díaz M., Álvarez M., Ledesma J., Pedraza-Chaverri J. Antioxidant activity and protection against oxidative-induced damage of Acacia shaffneri and Acacia farnesiana pods extractsin vitro and in vivo assays. BMC Complement. Altern. Med. 2015;15:1–8. doi: 10.1186/s12906-015-0959-y.
    1. Sánchez E., Heredia N., Camacho-Corona M.d.R., García S. Isolation, characterization and mode of antimicrobial action against Vibrio cholerae of methyl gallate isolated from Acacia farnesiana. J. Appl. Microbiol. 2013;115:1307–1316. doi: 10.1111/jam.12328.
    1. Hernández-García E., García A., Garza-González E., Avalos-Alanís F.G., Rivas-Galindo V.M., Rodríguez-Rodríguez J., Alcantar-Rosales V.M., Delgadillo-Puga C., Camacho-Corona M. Chemical composition of Acacia farnesiana (L) wild fruits and its activity against Mycobacterium tuberculosis and dysentery bacteria. J. Ethnopharmacol. 2019;230:74–80. doi: 10.1016/j.jep.2018.10.031.
    1. National Research Council . Nutrient Requirements of Goatsangora, Dairy, and Meat Goats in Temperate and Tropical Countries. The National Academies Press; Washington, DC, USA: 1981. p. 100.
    1. AOAC . Official Methods of Analysis. Association of Official Analytical Chemists; Washington, DC, USA: 2003. [(accessed on 10 August 2018)]. Available online: .
    1. Chen S., Bobe G., Zimmerman S., Hammond E., Luhman C., Boylston T., Freeman A., Beitz D. Physical and Sensory Properties of Dairy Products from Cows with Various Milk Fatty Acid Compositions. J. Agric. Food Chem. 2004;52:3422–3428. doi: 10.1021/jf035193z.
    1. Ulbricht T.L.V., Southgate D.A.T. Coronary heart disease: seven dietary factors. Lancet. 1991;338:985–992. doi: 10.1016/0140-6736(91)91846-M.
    1. Chen L.Y., Cheng C.W., Liang J.Y. Effect of esterification condensation on the Folin–Ciocalteu method for the quantitative measurement of total phenols. Food Chem. 2015;170:10–15. doi: 10.1016/j.foodchem.2014.08.038.
    1. Koren E., Kohen R., Ginsburg I. Polyphenols enhance total oxidant-scavenging capacities of human blood by binding to red blood cells. Exp. Biol. Med. 2010;235:689–699. doi: 10.1258/ebm.2010.009370.
    1. Huang D., Ou B., Hampsch-Woodill M., Flanagan J.A., Deemer E.K. Development and validation of oxygen radical absorbance capacity assay for lipophilic antioxidants using randomly methylated β-Cyclodextrin as the solubility enhancer. J. Agric. Food Chem. 2002;50:1815–1821. doi: 10.1021/jf0113732.
    1. Benzie I., Strain J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power” the FRAP assay. Anal. Biochem. 1996;239:70–76. doi: 10.1006/abio.1996.0292.
    1. Hernández-García E., García A., Avalos-Alanís F.G., Rivas-Galindo V.M., Delgadillo-Puga C., Camacho-Corona M. Nuclear magnetic resonance spectroscopy data of isolated compounds from Acacia farnesiana (L) Wild fruits and two esterified derivatives. Data Brief. 2019;22:255–268. doi: 10.1016/j.dib.2018.12.008.
    1. Fernández C., Suárez Y., Ferruelo J.A., Gómez-Coronado D., Lasunción M.A. Inhibition of cholesterol biosynthesis by ∆22-unsaturated phytosterol via competitive inhibition of sterol ∆24-reductase in mammalian cells. Biochem. J. 2002;366:109–116. doi: 10.1042/bj20011777.
    1. Bhoyar M.S., Mishra G.P., Naik P.K., Srivastava R.B. Estimation of antioxidant activity and total phenolics among natural populations of Caper (Capparis spinosa) leaves collected from cold arid desert of trans-Himalayas. Aust. J. Crop Sci. 2011;5:912–919.
    1. Huang D., Ou B., Prior R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005;53:1841–1856. doi: 10.1021/jf030723c.
    1. Cao G., Prior R. Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin. Chem. 1998;44:1309–1315.

Source: PubMed

3
Abonnere