Factors associated with readmissions in women participating in screening programs and treated for breast cancer: a retrospective cohort study

Carme Miret, Laia Domingo, Javier Louro, Teresa Barata, Marisa Baré, Joana Ferrer, Maria Carmen Carmona-García, Xavier Castells, Maria Sala, Carme Miret, Laia Domingo, Javier Louro, Teresa Barata, Marisa Baré, Joana Ferrer, Maria Carmen Carmona-García, Xavier Castells, Maria Sala

Abstract

Background: We aimed to identify the risk factors associated with early, late and long-term readmissions in women diagnosed with breast cancer participating in screening programs.

Methods: We performed a multicenter cohort study of 1055 women aged 50-69 years participating in Spanish screening programs, diagnosed with breast cancer between 2000 and 2009, and followed up to 2014. Readmission was defined as a hospital admission related to the disease and/or treatment complications, and was classified as early (< 30 days), late (30 days-1 year), or long-term readmission (> 1 year). We used logistic regression to estimate the adjusted odds ratios (aOR), and 95% confidence intervals (95% CI) to explore the factors associated with early, late and long-term readmissions, adjusting by women's and tumor characteristics, detection mode, treatments received, and surgical and medical complications.

Results: Among the women included, early readmission occurred in 76 (7.2%), late readmission in 87 (8.2%), long-term readmission in 71 (6.7%), and no readmission in 821 (77.8%). Surgical complications were associated with an increased risk of early readmissions (aOR = 3.62; 95%CI: 1.27-10.29), and medical complications with late readmissions (aOR = 8.72; 95%CI: 2.83-26.86) and long-term readmissions (aOR = 4.79; 95%CI: 1.41-16.31).

Conclusion: Our results suggest that the presence of surgical or medical complications increases readmission risk, taking into account the detection mode and treatments received. Identifying early complications related to an increased risk of readmission could be useful to adapt the management of patients and reduce further readmissions.

Trial registration: ClinicalTrials.govIdentifier: NCT03165006. Registration date: May 22, 2017 (Retrospectively registered).

Keywords: Breast cancer; Complication; Readmission; Screening.

Conflict of interest statement

The authors have no competing interests to declare.

Figures

Fig. 1
Fig. 1
Flowchart of the study

References

    1. Torre L, Bray F, Siegel RL, Ferlay J, Lortet-tieulent J, Jemal A. Global Cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.
    1. International Agency for Research on Cancer, World Health Organization. GLOBOCAN 2018: cancer today. Breast cancer incidence in women, Spain 2018.
    1. Jørgensen KJ, Zahl P-H, Gøtzsche PC. Breast cancer mortality in organised mammography screening in Denmark: comparative study. BMJ. 2010;340(5_Part_1):c1241.
    1. Paci E, EUROSCREENWorking Group Summary of the evidence of breast cancer service screening outcomes in Europe and first estimate of the benefit and harm balance sheet. J Med Screen. 2012;19(SUPPL. 1):5–13.
    1. Independent UK Panel on Breast Cancer Screening. Marmot MG, Altman DG, Cameron DA, Dewar JA, Thompson SG, et al. The benefits and harms of breast cancer screening: an independent review. Br J Cancer. 2013;108:2205–2240.
    1. Puigpinós-Riera R, Castillo Gómez A, Romero Morales A, Aller M, Castells X, Sala M. Social and clinical determinants of the use of health services in women with breast cancer (cohort DAMA) Gac Sanit. 2019;33(5):434–441.
    1. Mook S, Van’t Veer LJ, Rutgers EJ, Ravdin PM, Van De Velde AO, Van Leeuwen FE, et al. Independent prognostic value of screen detection in invasive breast cancer. J Natl Cancer Inst. 2011;103(7):585–597.
    1. Choi KS, Yoon M, Song SH, Suh M, Park B, Jung KW, et al. Effect of mammography screening on stage at breast cancer diagnosis: results from the Korea National Cancer Screening Program. Sci Rep. 2018;8(1):1–8.
    1. Sankatsing VDV, van Ravesteyn NT, Heijnsdijk EAM, Looman CWN, van Luijt PA, Fracheboud J, et al. The effect of population-based mammography screening in Dutch municipalities on breast cancer mortality: 20 years of follow-up. Int J Cancer. 2017;141(4):671–677.
    1. Morrell S, Taylor R, Roder D, Robson B, Gregory M, Craig K. Mammography service screening and breast cancer mortality in New Zealand: a National Cohort Study 1999-2011. Br J Cancer. 2017;116(6):828–839.
    1. Tóth D, Varga Z, Tóth J, Árkosy P, Sebő É. Short- and long-term (10-year) results of an organized, population-based breast Cancer screening program: comparative, observational study from Hungary. World J Surg. 2018;42(5):1396–1402.
    1. Hofvind S, Holen, Aas T, Roman M, Sebuødegård S, Akslen LA. Women treated with breast conserving surgery do better than those with mastectomy independent of detection mode, prognostic and predictive tumor characteristics. Eur J Surg Oncol. 2015;41(10):1417–1422.
    1. Løberg M, Lousdal ML, Bretthauer M, Kalager M. Benefits and harms of mammography screening. Breast Cancer Res. 2015;17(63):1–12.
    1. Lai JK, Martin MA, Meyricke R, O’Neill T, Roberts S. Factors associated with short-term hospital readmission rates for breast Cancer patients in Western Australia: an observational study. J Am Coll Surg. 2007;204(2):193–200.
    1. Nelson JA, Fischer JP, Chung C, Wu LC, Serletti JM, Kovach SJ. Risk of Readmission following Immediate breast reconstruction: results from the 2011 American College of Surgeons National Surgical Quality Improvement Program data sets. Plast Reconstr Surg. 2014;134(2):193e–201e.
    1. Gani F, Lucas DJ, Kim Y, Schneider EB, Pawlik TM. Understanding variation in 30-day surgical readmission in the era of accountable care. JAMA Surg. 2015;150(11):1042.
    1. Chow I, Hanwright PJ, Hansen NM, Leilabadi SN, Kim JYS. Predictors of 30-day readmission after mastectomy: a multi-institutional analysis of 21,271 patients. Breast Dis. 2015;35(4):221–231.
    1. Sun SX, Leung AN, Dillon PW, Hollenbeak CS. Length of stay and readmissions in mastectomy patients. Breast J. 2015;21(5):526–532.
    1. Landercasper J, Bennie B, Bray MS, Vang CA, Linebarger JH. Does neoadjuvant chemotherapy affect morbidity, mortality, reoperations, or readmissions in patients undergoing lumpectomy or mastectomy for breast cancer? Gland Surg. 2017;6(1):14–26.
    1. Gibson S, McConigley R. Unplanned oncology admissions within 14 days of non-surgical discharge: a retrospective study. Support Care Cancer. 2016;24(1):311–317.
    1. International Agency for Research on Cancer. Cancer screening in The European Union (2017). Recommendation on cancer screening 2017.
    1. Perry N, Broeders M, de Wolf C, Tornberg S, Holland R, von Karsa L. European guidelines for quality assurance in breast cancer screening and diagnosis. Fourth edition--summary document. Ann Oncol. 2006;19(4):614–622.
    1. Amendoeira I, Anttila A, Bellocq J, Bianchi S, Bielska-Lasota M, Boecker W, et al. European guidelines for quality assurance in breast cancer screening and diagnosis (2013). Health & Consum Protec. European Communities/EUREF, editor. Vol. 19, Health & Consum Protec. 2006. p. 1–432.
    1. Ascunce N, Salas D, Zubizarreta R, Almazán R, Ibáñez J, Ederra M, et al. Cancer screening in Spain. Ann Oncol. 2010;21(SUPPL.3):43–51.
    1. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–383.
    1. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B, Senn H-J, et al. Strategies for subtypes--dealing with the diversity of breast cancer: highlights of the St. Gallen international expert consensus on the primary therapy of early breast Cancer 2011. Ann Oncol. 2011;22(8):1736–1747.
    1. Halfon P, Eggli Y, Prêtre-Rohrbach I, Meylan D, Marazzi A, Burnand B. Validation of the potentially avoidable hospital readmission rate as a routine indicator of the quality of hospital care. Med Care. 2006;44(11):972–981.
    1. Hynes DM, Weaver F, Morrow M, Folk F, Winchester DJ, Mallard M, et al. Breast cancer surgery trends and outcomes: results from a National Department of veterans affairs study. J Am Coll Surg. 2004;198(5):707–716.
    1. Hassett MJ, O’Malley AJ, Pakes JR, Newhouse JP, Earle CC. Frequency and cost of chemotherapy-related serious adverse effects in a population sample of women with breast cancer. J Natl Cancer Inst. 2006;98(16):1108–1117.
    1. Pittman NM, Hopman WM, Mates M. Emergency room visits and hospital admission rates after curative chemotherapy for breast Cancer. J Oncol Pract. 2015;11(2):120–125.
    1. Domingo L, Salas D, Zubizarreta R, Baré M, Sarriugarte G, Barata T, et al. Tumor phenotype and breast density in distinct categories of interval cancer: results of population-based mammography screening in Spain. Breast Cancer Res. 2014;16(1):R3.
    1. Baré M, Torà N, Salas D, Sentís M, Ferrer J, Ibáñez J, et al. Mammographic and clinical characteristics of different phenotypes of screen-detected and interval breast cancers in a nationwide screening program. Breast Cancer Res Treat. 2015;154(2):403–415.

Source: PubMed

3
Abonnere