Photobiomodulation-Underlying Mechanism and Clinical Applications

Claudia Dompe, Lisa Moncrieff, Jacek Matys, Kinga Grzech-Leśniak, Ievgeniia Kocherova, Artur Bryja, Małgorzata Bruska, Marzena Dominiak, Paul Mozdziak, Tarcio Hiroshi Ishimine Skiba, Jamil A Shibli, Ana Angelova Volponi, Bartosz Kempisty, Marta Dyszkiewicz-Konwińska, Claudia Dompe, Lisa Moncrieff, Jacek Matys, Kinga Grzech-Leśniak, Ievgeniia Kocherova, Artur Bryja, Małgorzata Bruska, Marzena Dominiak, Paul Mozdziak, Tarcio Hiroshi Ishimine Skiba, Jamil A Shibli, Ana Angelova Volponi, Bartosz Kempisty, Marta Dyszkiewicz-Konwińska

Abstract

The purpose of this study is to explore the possibilities for the application of laser therapy in medicine and dentistry by analyzing lasers' underlying mechanism of action on different cells, with a special focus on stem cells and mechanisms of repair. The interest in the application of laser therapy in medicine and dentistry has remarkably increased in the last decade. There are different types of lasers available and their usage is well defined by different parameters, such as: wavelength, energy density, power output, and duration of radiation. Laser irradiation can induce a photobiomodulatory (PBM) effect on cells and tissues, contributing to a directed modulation of cell behaviors, enhancing the processes of tissue repair. Photobiomodulation (PBM), also known as low-level laser therapy (LLLT), can induce cell proliferation and enhance stem cell differentiation. Laser therapy is a non-invasive method that contributes to pain relief and reduces inflammation, parallel to the enhanced healing and tissue repair processes. The application of these properties was employed and observed in the treatment of various diseases and conditions, such as diabetes, brain injury, spinal cord damage, dermatological conditions, oral irritation, and in different areas of dentistry.

Keywords: laser; low-level laser therapy; photobiomodulation; stem cells; tissue regeneration.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The application of red light (600–810 nm) is absorbed by the enzyme cytochrome c oxidase, which is located in the unit IV respiratory chain of the mitochondria. Nitric oxide (NO) is then displaced and activates the enzyme and this leads to a proton gradient. Consequently, calcium ions (Ca2+), reactive oxygen species (ROS), and ATP production levels are increased. On the other hand, the application of near-infrared light (810–1064 nm) activates light-sensitive ion channels, and increases the levels of Ca2+. ROS and cyclic AMP (cAMP)then interact with the calcium ions. All of these activities increase cell differentiation, proliferation and migration, among other things. Created with BioRender.
Figure 2
Figure 2
In hypoxic conditions, HIF-α undergoes dimerization with HIF-β. Laser therapy could possibly induce this affect further. The dimer then binds to VEGF; therefore, the gene expression is promoted and leads to angiogenesis and osteogenic differentiation. Created with BioRender.
Figure 3
Figure 3
In the application of PBM, photon are absorbed by chromophores which activates ROS. As a secondary messenger, ROS results in the activation and stimulation of various pathways including p38 MAPK and PRKD2. Oxidative stress can also stimulate p38 MAPK by the presence of cytokines. The two pathways stimulate the hormone activity of melatonin, which induces osteoblast differentiation. However, p38 MAPK also increases p-ATF2 levels, which can result in decline of chondrocytes. Created with BioRender.

References

    1. All about High Intensity Laser. BTL High Intensity Laser. [(accessed on 1 June 2020)]; Available online: .
    1. Overman D. Treating Pain with Low vs. High-Power Lasers: What is the Difference? Rehab Management. [(accessed on 1 June 2020)];2019 Available online:
    1. Astori G., Vignati F., Bardelli S., Tubio M., Gola M., Albertini V., Bambi F., Scali G., Castelli D., Rasini V., et al. “In vitro” and multicolor phenotypic characterization of cell subpopulations identified in fresh human adipose tissue stromal vascular fraction and in the derived mesenchymal stem cells. J. Transl. Med. 2007;5:55. doi: 10.1186/1479-5876-5-55.
    1. Whelan H.T. Proceedings of the AIP Conference Proceedings. Volume 504. AIP Publishing; College Park, MD, USA: 2003. The NASA light-emitting diode medical program—progress in space flight and terrestrial applications; pp. 37–43.
    1. Fernandes A.P., Junqueira M.D.A., Marques N.C.T., Machado M.A.A.M., Santos C.F., Oliveira T.M., Sakai V.T. Effects of low-level laser therapy on stem cells from human exfoliated deciduous teeth. J. Appl. Oral Sci. 2016;24:332–337. doi: 10.1590/1678-775720150275.
    1. Saito S., Shimizu N. Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat. Am. J. Orthod. Dentofac. Orthop. 1997;111:525–532. doi: 10.1016/S0889-5406(97)70152-5.
    1. Khadra M., Lyngstadaas S.P., Haanæs H.R., Mustafa K. Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material. Biomaterials. 2005;26:3503–3509. doi: 10.1016/j.biomaterials.2004.09.033.
    1. De Freitas L.F., Hamblin M.R. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE J. Sel. Top. Quantum Electron. 2016;22:7000417. doi: 10.1109/JSTQE.2016.2561201.
    1. Yadav A., Gupta A. Noninvasive red and near-infrared wavelength-induced photobiomodulation: Promoting impaired cutaneous wound healing. Photodermatol. Photoimmunol. Photomed. 2017;33:4–13. doi: 10.1111/phpp.12282.
    1. Chen A.C.-H., Arany P.R., Huang Y.-Y., Tomkinson E.M., Sharma S.K., Kharkwal G.B., Saleem T., Mooney D., Yull F.E., Blackwell T.S., et al. Low-Level Laser Therapy Activates NF-kB via Generation of Reactive Oxygen Species in Mouse Embryonic Fibroblasts. PLoS ONE. 2011;6:e22453. doi: 10.1371/journal.pone.0022453.
    1. Zamani A.R.N., Saberianpour S., Geranmayeh M.H., Bani F., Haghighi L., Rahbarghazi R. Modulatory effect of photobiomodulation on stem cell epigenetic memory: A highlight on differentiation capacity. Lasers Med. Sci. 2019;35:299–306. doi: 10.1007/s10103-019-02873-7.
    1. Kujawa J., Pasternak K., Zavodnik I., Irzmański R., Wróbel D., Bryszewska M. The effect of near-infrared MLS laser radiation on cell membrane structure and radical generation. Lasers Med. Sci. 2014;29:1663–1668. doi: 10.1007/s10103-014-1571-y.
    1. Hamblin M.R. Photobiomodulation for traumatic brain injury and stroke. J. Neurosci. Res. 2018;96:731–743. doi: 10.1002/jnr.24190.
    1. Katagiri W., Lee G., Tanushi A., Tsukada K., Choi H.S., Kashiwagi S. High-throughput single-cell live imaging of photobiomodulation with multispectral near-infrared lasers in cultured T cells. J. Biomed. Opt. 2020;25:036003. doi: 10.1117/1.JBO.25.3.036003.
    1. Wang X., Tian F., Soni S.S., Gonzalez-Lima F., Liu H. Interplay between up-regulation of cytochrome-c-oxidase and hemoglobin oxygenation induced by near-infrared laser. Sci. Rep. 2016;6:30540. doi: 10.1038/srep30540.
    1. Wang Y., Huang Y.Y., Wang Y., Lyu P., Hamblin M.R. Photobiomodulation (blue and green light) encourages osteoblastic-differentiation of human adipose-derived stem cells: Role of intracellular calcium and light-gated ion channels. Sci. Rep. 2016;6:33719. doi: 10.1038/srep33719.
    1. Caruso-Davis M.K., Guillot T.S., Podichetty V.K., Mashtalir N., Dhurandhar N.V., Dubuisson O., Yu Y., Greenway F.L. Efficacy of low-level laser therapy for body contouring and spot fat reduction. Obes. Surg. 2011;21:722–729. doi: 10.1007/s11695-010-0126-y.
    1. Komarova S.V., Ataullakhanov F.I., Globus R.K. Bioenergetics and mitochondrial transmembrane potential during differentiation of cultured osteoblasts. Am. J. Physiol. Cell Physiol. 2000;279:C1220–C1229. doi: 10.1152/ajpcell.2000.279.4.C1220.
    1. Kim J.E., Woo Y.J., Sohn K.M., Jeong K.H., Kang H. Wnt/β-catenin and ERK pathway activation: A possible mechanism of photobiomodulation therapy with light-emitting diodes that regulate the proliferation of human outer root sheath cells. Lasers Surg. Med. 2017;49:940–947. doi: 10.1002/lsm.22736.
    1. Pires Marques E.C., Piccolo Lopes F., Nascimento I.C., Morelli J., Pereira M.V., Machado Meiken V.M., Pinheiro S.L. Photobiomodulation and photodynamic therapy for the treatment of oral mucositis in patients with cancer. Photodiagn. Photodyn. Ther. 2020;29:101621. doi: 10.1016/j.pdpdt.2019.101621.
    1. Arany P. Photobiomodulation therapy—Easy to do, but difficult to get right. Laser Focus World. 2019;55:22–24.
    1. Dos Santos S.A., Serra A.J., Stancker T.G., Simões M.C.B., Dos Santos Vieira M.A., Leal-Junior E.C., Prokic M., Vasconsuelo A., Santos S.S., De Carvalho P.D.T.C. Effects of Photobiomodulation Therapy on Oxidative Stress in Muscle Injury Animal Models: A Systematic Review. Oxid. Med. Cell. Longev. 2017;2017:5273403. doi: 10.1155/2017/5273403.
    1. Migliario M., Pittarella P., Fanuli M., Rizzi M., Renò F. Laser-induced osteoblast proliferation is mediated by ROS production. Lasers Med. Sci. 2014;29:1463–1467. doi: 10.1007/s10103-014-1556-x.
    1. Wang Y., Huang Y.Y., Wang Y., Lyu P., Hamblin M.R. Photobiomodulation of human adipose-derived stem cells using 810 nm and 980 nm lasers operates via different mechanisms of action. Biochim. Biophys. Acta Gen. Subj. 2017;1861:441–449. doi: 10.1016/j.bbagen.2016.10.008.
    1. Mvula B., Abrahamse H. Low intensity laser irradiation and growth factors influence differentiation of adipose derived stem cells into smooth muscle cells in a coculture environment over a period of 72 hours. Int. J. Photoenergy. 2014;2014:598793. doi: 10.1155/2014/598793.
    1. Kim H., Choi K., Kweon O.K., Kim W.H. Enhanced wound healing effect of canine adipose-derived mesenchymal stem cells with low-level laser therapy in athymic mice. J. Dermatol. Sci. 2012;68:149–156. doi: 10.1016/j.jdermsci.2012.09.013.
    1. Soleimani M., Abbasnia E., Fathi M., Sahraei H., Fathi Y., Kaka G. The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts-an in vitro study. Lasers Med. Sci. 2012;27:423–430. doi: 10.1007/s10103-011-0930-1.
    1. Son J.H., Park B.S., Kim I.R., Sung I.Y., Cho Y.C., Kim J.S., Kim Y.D. A novel combination treatment to stimulate bone healing and regeneration under hypoxic conditions: Photobiomodulation and melatonin. Lasers Med. Sci. 2017;32:533–541. doi: 10.1007/s10103-017-2145-6.
    1. Son J.-H., Cho Y.-C., Sung I.-Y., Kim I.-R., Park B.-S., Kim Y.-D. Melatonin promotes osteoblast differentiation and mineralization of MC3T3-E1 cells under hypoxic conditions through activation of PKD/p38 pathways. J. Pineal Res. 2014;57:385–392. doi: 10.1111/jpi.12177.
    1. Ho-Shui-Ling A., Bolander J., Rustom L.E., Johnson A.W., Luyten F.P., Picart C. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018;180:143–162. doi: 10.1016/j.biomaterials.2018.07.017.
    1. Abramovitch-Gottlib L., Gross T., Naveh D., Geresh S., Rosenwaks S., Bar I., Vago R. Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers Med. Sci. 2005;20:138–146. doi: 10.1007/s10103-005-0355-9.
    1. Wang W., Yeung K.W.K. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact. Mater. 2017;2:224–247. doi: 10.1016/j.bioactmat.2017.05.007.
    1. Leonida A., Paiusco A., Rossi G., Carini F., Baldoni M., Caccianiga G. Effects of low-level laser irradiation on proliferation and osteoblastic differentiation of human mesenchymal stem cells seeded on a three-dimensional biomatrix: In vitro pilot study. Lasers Med. Sci. 2013;28:125–132. doi: 10.1007/s10103-012-1067-6.
    1. Robinson N.G. Beyond the Laboratory, into the Clinic: What Dogs with Disk Disease Have Taught Us about Photobiomodulation for Spinal Cord Injury. Photomed. Laser Surg. 2017;35:589–594. doi: 10.1089/pho.2017.4348.
    1. Bennaim M., Porato M., Jarleton A., Hamon M., Carroll J.D., Gommeren K., Balligand M. Preliminary evaluation of the effects of photobiomodulation therapy and physical rehabilitation on early postoperative recovery of dogs undergoing hemilaminectomy for treatment of thoracolumbar intervertebral disk disease. Am. J. Vet. Res. 2017;78:195–206. doi: 10.2460/ajvr.78.2.195.
    1. De Witte T.-M., Fratila-Apachitei L.E., Zadpoor A.A., Peppas N.A. Bone tissue engineering via growth factor delivery: From scaffolds to complex matrices. Regen. Biomater. 2018;5:197–211. doi: 10.1093/rb/rby013.
    1. Kocherova I., Bryja A., Mozdziak P., Angelova Volponi A., Dyszkiewicz-Konwińska M., Piotrowska-Kempisty H., Antosik P., Bukowska D., Bruska M., Iżycki D., et al. Human Umbilical Vein Endothelial Cells (HUVECs) Co-Culture with Osteogenic Cells: From Molecular Communication to Engineering Prevascularised Bone Grafts. J. Clin. Med. 2019;8:1602. doi: 10.3390/jcm8101602.
    1. Wang L., Zhu L.X., Wang Z., Lou A.J., Yang Y.X., Guo Y., Liu S., Zhang C., Zhang Z., Hu H.S., et al. Development of a centrally vascularized tissue engineering bone graft with the unique core-shell composite structure for large femoral bone defect treatment. Biomaterials. 2018;175:44–60. doi: 10.1016/j.biomaterials.2018.05.017.
    1. Sobol E., Baum O., Shekhter A., Wachsmann-Hogiu S., Shnirelman A., Alexandrovskaya Y., Sadovskyy I., Vinokur V. Laser-induced micropore formation and modification of cartilage structure in osteoarthritis healing. J. Biomed. Opt. 2017;22:091515. doi: 10.1117/1.JBO.22.9.091515.
    1. Li S., Xue T., He F., Liu Z., Ouyang S., Cao D., Wu J. A time-resolved proteomic analysis of transcription factors regulating adipogenesis of human adipose derived stem cells. Biochem. Biophys. Res. Commun. 2019;511:855–861. doi: 10.1016/j.bbrc.2019.02.134.
    1. Baum O.I., Zheltov G.I., Omelchenko A.I., Romanov G.S., Romanov O.G., Sobol E.N. Thermomechanical effect of pulse-periodic laser radiation on cartilaginous and eye tissues. Laser Phys. 2013;23:085602. doi: 10.1088/1054-660X/23/8/085602.
    1. Oron U., Maltz L., Tuby H., Sorin V., Czerniak A. Enhanced Liver Regeneration Following Acute Hepatectomy by Low-Level Laser Therapy. Photomed. Laser Surg. 2010;28:675–678. doi: 10.1089/pho.2009.2756.
    1. Rathnakar B., Rao B.S.S., Prabhu V., Chandra S., Rai S., Rao A.C.K., Sharma M., Gupta P.K., Mahato K.K. Photo-biomodulatory response of low-power laser irradiation on burn tissue repair in mice. Lasers Med. Sci. 2016;31:1741–1750. doi: 10.1007/s10103-016-2044-2.
    1. Matys J., Świder K., Flieger R. Laser instant implant impression method: A case presentation. Dent. Med. Probl. 2017;54:101–106. doi: 10.17219/dmp/66363.
    1. Milonni P.W., Eberly J.H. Laser Physics. John Wiley & Sons; Hoboken, NJ, USA: 2010.
    1. Matys J., Flieger R., Dominiak M. Effect of diode lasers with wavelength of 445 and 980 nm on a temperature rise when uncovering implants for second stage surgery: An ex-vivo study in pigs. Adv. Clin. Exp. Med. 2017;26:687–693. doi: 10.17219/acem/68943.
    1. de Freitas P.M., Simoes A. Lasers in Dentistry: Guide for Clinical Practice. John Wiley & Sons; Hoboken, NJ, USA: 2015.
    1. Matys J., Grzech-Leśniak K., Flieger R., Dominiak M. Assessment of an impact of a diode laser mode with wavelength of 980 nm on a temperature rise measured by means of k-02 thermocouple: Preliminary results. Dent. Med. Probl. 2016;53:345–351. doi: 10.17219/dmp/62575.
    1. Gomes F.V., Mayer L., Massotti F.P., Baraldi C.E., Ponzoni D., Webber J.B.B., de Oliveira M.G. Low-level laser therapy improves peri-implant bone formation: Resonance frequency, electron microscopy, and stereology findings in a rabbit model. Int. J. Oral Maxillofac. Surg. 2015;44:245–251. doi: 10.1016/j.ijom.2014.09.010.
    1. Mohammed I.F.R., Kaka L.N., Kaka L.N. Promotion of Regenerative Processes in Injured Peripheral Nerve Induced by Low-Level Laser Therapy. Photomed. Laser Surg. 2007;25:107–111. doi: 10.1089/pho.2006.1090.
    1. Grzech-Lesniak K., Matys J., Jurczyszyn K., Ziółkowski P., Dominiak M., Brugnera Junior A., Romeo U. Histological and thermometric examination of soft tissue de-epithelialization using digitally controlled Er:YAG laser handpiece: An ex vivo study. Photomed. Laser Surg. 2018;36:313–319. doi: 10.1089/pho.2017.4413.
    1. Matys J., Flieger R., Tenore G., Grzech-Leśniak K., Romeo U., Dominiak M. Er:YAG laser, piezosurgery, and surgical drill for bone decortication during orthodontic mini-implant insertion: Primary stability analysis—An animal study. Lasers Med. Sci. 2018;33:489–495. doi: 10.1007/s10103-017-2381-9.
    1. Patel C.K.N. Continuous-Wave Laser Action on Vibrational-Rotational Transitions of CO2. Phys. Rev. 1964;136:A1187–A1193. doi: 10.1103/PhysRev.136.A1187.
    1. Grzech-Leśniak K., Nowicka J., Pajączkowska M., Matys J., Szymonowicz M., Kuropka P., Rybak Z., Dobrzyński M., Dominiak M. Effects of Nd:YAG laser irradiation on the growth of Candida albicans and Streptococcus mutans: In vitro study. Lasers Med. Sci. 2018;34:129–137. doi: 10.1007/s10103-018-2622-6.
    1. Matys J., Flieger R., Dominiak M. Assessment of Temperature Rise and Time of Alveolar Ridge Splitting by Means of Er:YAG Laser, Piezosurgery, and Surgical Saw: An Ex Vivo Study. Biomed. Res. Int. 2016;2016:9654975. doi: 10.1155/2016/9654975.
    1. Khadra M., Ronold H.J., Lyngstadaas S.P., Ellingsen J.E., Haanaes H.R. Low-level laser therapy stimulates bone-implant interaction: An experimental study in rabbits. Clin. Oral Implants Res. 2004;15:325–332. doi: 10.1111/j.1600-0501.2004.00994.x.
    1. Matys J., Świder K., Grzech-Leśniak K., Dominiak M., Romeo U. Photobiomodulation by a 635 nm Diode Laser on Peri-Implant Bone: Primary and Secondary Stability and Bone Density Analysis—A Randomized Clinical Trial. Biomed. Res. Int. 2019;2019:2785302. doi: 10.1155/2019/2785302.
    1. AlGhamdi K.M., Kumar A., Moussa N.A. Low-level laser therapy: A useful technique for enhancing the proliferation of various cultured cells. Lasers Med. Sci. 2012;27:237–249. doi: 10.1007/s10103-011-0885-2.
    1. Schindl A., Schindl M., Pernerstorfer-Schön H., Schindl L. Low-intensity laser therapy: A review. J. Investig. Med. 2000;48:312–326.
    1. Pires Oliveira D.A.A., de Oliveira R.F., Zangaro R.A., Soares C.P. Evaluation of Low-Level Laser Therapy of Osteoblastic Cells. Photomed. Laser Surg. 2008;26:401–404. doi: 10.1089/pho.2007.2101.
    1. Amid R., Kadkhodazadeh M., Ahsaie M.G., Hakakzadeh A. Effect of low level laser therapy on proliferation and differentiation of the cells contributing in bone regeneration. J. Lasers Med. Sci. 2014;5:163–170.
    1. Maluf A.P., Maluf R.P., Da Rocha Brito C., França F.M.G., De Brito R.B. Mechanical evaluation of the influence of low-level laser therapy in secondary stability of implants in mice shinbones. Lasers Med. Sci. 2010;25:693–698. doi: 10.1007/s10103-010-0778-9.
    1. Stein A., Benayahu D., Maltz L., Oron U. Low-Level Laser Irradiation Promotes Proliferation and Differentiation of Human Osteoblasts in Vitro. Photomed. Laser Surg. 2005;23:161–166. doi: 10.1089/pho.2005.23.161.
    1. Kreisler M., Christoffers A.B., Al-Haj H., Willershausen B., d’Hoedt B. Low level 809-nm diode laser-induced in vitro stimulation of the proliferation of human gingival fibroblasts. Lasers Surg. Med. 2002;30:365–369. doi: 10.1002/lsm.10060.
    1. Khadra M., Kasem N., Lyngstadaas S.P., Haanaes H.R., Mustafa K. Laser therapy accelerates initial attachment and subsequent behaviour of human oral fibroblasts cultured on titanium implant material. A scanning electron microscopic and histomorphometric analysis. Clin. Oral Implants Res. 2005;16:168–175. doi: 10.1111/j.1600-0501.2004.01092.x.
    1. Almeida-Lopes L., Rigau J., Amaro Zângaro R., Guidugli-Neto J., Marques Jaeger M.M. Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg. Med. 2001;29:179–184. doi: 10.1002/lsm.1107.
    1. Rani P.K., Raman R., Agarwal S., Paul P.G., Uthra S., Margabandhu G., Senthilkumar D., Kumaramanickavel G., Sharma T. Diabetic retinopathy screening model for rural population: Awareness and screening methodology. Rural Remote Health. 2005;5:350.
    1. Grzech-Leśniak K., Sculean A., Gašpirc B. Laser reduction of specific microorganisms in the periodontal pocket using Er:YAG and Nd:YAG lasers: A randomized controlled clinical study. Lasers Med. Sci. 2018;33:1461–1470. doi: 10.1007/s10103-018-2491-z.
    1. Grzech-Leśniak K., Gaspirc B., Sculean A. Clinical and microbiological effects of multiple applications of antibacterial photodynamic therapy in periodontal maintenance patients. A randomized controlled clinical study. Photodiagn. Photodyn. Ther. 2019;27:44–50. doi: 10.1016/j.pdpdt.2019.05.028.
    1. Grzech-Leśniak K., Matys J., Dominiak M. Comparison of the clinical and microbiological effects of antibiotic therapy in periodontal pockets following laser treatment: An in vivo study. Adv. Clin. Exp. Med. 2018;27:1263–1270. doi: 10.17219/acem/70413.
    1. Shibli J.A. Is Laser the Best Choice for the Treatment of Peri-Implantitis? Photomed. Laser Surg. 2018;36:569–570. doi: 10.1089/pho.2018.4521.
    1. Makela A. Why the Same Laser Protocols can have Different Clinical Results in the Treatment of Diabetes. Lasers Med. Sci. 2007;23:71–116.
    1. Bodnar P.M., Peshko A.O., Prystupiuk O.M., Voronko A.A., Kyriienko D.V., Mykhal’chyshyn H.P., Naumova M.I. Laser therapy in diabetes mellitus. Likars’ka Sprav. 1999;6:125–128.
    1. Zhang J., Xing D., Gao X. Low-power laser irradiation activates Src tyrosine kinase through reactive oxygen species-mediated signaling pathway. J. Cell. Physiol. 2008;217:518–528. doi: 10.1002/jcp.21529.
    1. Azbel’ D.I., Egorushkina N.V., Kuznetsova I.I., Ratushniak A.S., Shergin S.M., Shurgaia A.M., Shtark M.B. The effect of the blood serum from patients subjected to intravenous laser therapy on the parameters of synaptic transmission. Biull. Eksp. Biol. Med. 1993;116:149–151.
    1. Naeser M.A., Zafonte R., Krengel M.H., Martin P.I., Frazier J., Hamblin M.R., Knight J.A., Meehan W.P., Baker E.H. Significant Improvements in Cognitive Performance Post-Transcranial, Red/Near-Infrared Light-Emitting Diode Treatments in Chronic, Mild Traumatic Brain Injury: Open-Protocol Study. J. Neurotrauma. 2014;31:1008–1017. doi: 10.1089/neu.2013.3244.
    1. Huang S.-F., Tsai Y.-A., Wu S.-B., Wei Y.-H., Tsai P.-Y., Chuang T.-Y. Effects of Intravascular Laser Irradiation of Blood in Mitochondria Dysfunction and Oxidative Stress in Adults with Chronic Spinal Cord Injury. Photomed. Laser Surg. 2012;30:579–586. doi: 10.1089/pho.2012.3228.
    1. Yamany A.A., Sayed H.M. Effect of low level laser therapy on neurovascular function of diabetic peripheral neuropathy. J. Adv. Res. 2012;3:21–28. doi: 10.1016/j.jare.2011.02.009.
    1. Barolet D., Roberge C.J., Auger F.A., Boucher A., Germain L. Regulation of Skin Collagen Metabolism In Vitro Using a Pulsed 660nm LED Light Source: Clinical Correlation with a Single-Blinded Study. J. Invest. Dermatol. 2009;129:2751–2759. doi: 10.1038/jid.2009.186.
    1. Wikramanayake T.C., Rodriguez R., Choudhary S., Mauro L.M., Nouri K., Schachner L.A., Jimenez J.J. Effects of the Lexington LaserComb on hair regrowth in the C3H/HeJ mouse model of alopecia areata. Lasers Med. Sci. 2012;27:431–436. doi: 10.1007/s10103-011-0953-7.
    1. Feber T. Management of mucositis in oral irradiation. Clin. Oncol. R. Coll. Radiol. 1996;8:106–111. doi: 10.1016/S0936-6555(96)80116-6.
    1. Ciais G., Namer M., Schneider M., Demard F., Pourreau-Schneider N., Martin P.M., Soudry M., Franquin J.C., Zattara H. Laser therapy in the prevention and treatment of mucositis caused by anticancer chemotherapy. Bull. Cancer. 1992;79:183–191.
    1. Cowen D., Tardieu C., Schubert M., Peterson D., Resbeut M., Faucher C., Franquin J.C. Low energy Helium-Neon laser in the prevention of oral mucositis in patients undergoing bone marrow transplant: Results of a double blind randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 1997;38:697–703. doi: 10.1016/S0360-3016(97)00076-X.
    1. Lalla R.V., Bowen J., Barasch A., Elting L., Epstein J., Keefe D.M., McGuire D.B., Migliorati C., Nicolatou-Galitis O., Peterson D.E., et al. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer. 2014;120:1453–1461. doi: 10.1002/cncr.28592.
    1. Artés-Ribas M., Arnabat-Dominguez J., Puigdollers A. Analgesic effect of a low-level laser therapy (830 nm) in early orthodontic treatment. Lasers Med. Sci. 2013;28:335–341. doi: 10.1007/s10103-012-1135-y.
    1. Genc G., Kocadereli İ., Tasar F., Kilinc K., El S., Sarkarati B. Effect of low-level laser therapy (LLLT) on orthodontic tooth movement. Lasers Med. Sci. 2013;28:41–47. doi: 10.1007/s10103-012-1059-6.
    1. Kim S.-J., Kang Y.-G., Park J.-H., Kim E.-C., Park Y.-G. Effects of low-intensity laser therapy on periodontal tissue remodeling during relapse and retention of orthodontically moved teeth. Lasers Med. Sci. 2013;28:325–333. doi: 10.1007/s10103-012-1146-8.
    1. Aras M.H., Güngörmüş M. The Effect of Low-Level Laser Therapy on Trismus and Facial Swelling Following Surgical Extraction of a Lower Third Molar. Photomed. Laser Surg. 2009;27:21–24. doi: 10.1089/pho.2008.2258.
    1. Faria Amorim J.C., De Sousa G.R., Silveira L.D.B., Prates R.A., Pinotti M., Ribeiro M.S. Clinical Study of the Gingiva Healing after Gingivectomy and Low-Level Laser Therapy. Photomed. Laser Surg. 2006;24:588–594. doi: 10.1089/pho.2006.24.588.
    1. Han M., Fang H., Li Q.-L., Cao Y., Xia R., Zhang Z.-H. Effectiveness of Laser Therapy in the Management of Recurrent Aphthous Stomatitis: A Systematic Review. Scientifica (Cairo) 2016;2016:1–12. doi: 10.1155/2016/9062430.
    1. Jijin M.J., Rakaraddi M., Pai J., Jaishankar H.P., Krupashankar R., Kavitha A.P., Anjana R., Shobha R. Low-level laser therapy versus 5% amlexanox: A comparison of treatment effects in a cohort of patients with minor aphthous ulcers. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2016;121:269–273. doi: 10.1016/j.oooo.2015.11.021.
    1. Tezel A., Kara C., Balkaya V., Orbak R. An Evaluation of Different Treatments for Recurrent Aphthous Stomatitis and Patient Perceptions: Nd:YAG Laser versus Medication. Photomed. Laser Surg. 2009;27:101–106. doi: 10.1089/pho.2008.2274.
    1. Stona P., da Silva Viana E., dos Santos Pires L., Blessmann Weber J.B., Floriani Kramer P. Recurrent Labial Herpes Simplex in Pediatric Dentistry: Low-level Laser Therapy as a Treatment Option. Int. J. Clin. Pediatr. Dent. 2014;7:140–143. doi: 10.5005/jp-journals-10005-1252.
    1. Bello-Silva M.S., de Freitas P.M., Aranha A.C.C., Lage-Marques J.L., Simões A., de Paula Eduardo C. Low- and High-Intensity Lasers in the Treatment of Herpes Simplex Virus 1 Infection. Photomed. Laser Surg. 2010;28:135–139. doi: 10.1089/pho.2008.2458.
    1. Merigo E., Rocca J.-P., Pinheiro A.L.B., Fornaini C. Photobiomodulation Therapy in Oral Medicine: A Guide for the Practitioner with Focus on New Possible Protocols. Photobiomodul. Photomed. Laser Surg. 2019;37:669–680. doi: 10.1089/photob.2019.4624.
    1. Gobbo M., Verzegnassi F., Ronfani L., Zanon D., Melchionda F., Bagattoni S., Majorana A., Bardellini E., Mura R., Piras A., et al. Multicenter randomized, double-blind controlled trial to evaluate the efficacy of laser therapy for the treatment of severe oral mucositis induced by chemotherapy in children: laMPO RCT. Pediatr. Blood Cancer. 2018;65:e27098. doi: 10.1002/pbc.27098.
    1. Cafaro A., Arduino P.G., Massolini G., Romagnoli E., Broccoletti R. Clinical evaluation of the efficiency of low-level laser therapy for oral lichen planus: A prospective case series. Lasers Med. Sci. 2014;29:185–190. doi: 10.1007/s10103-013-1313-6.
    1. Grzech-Leśniak K. Making Use of Lasers in Periodontal Treatment: A New Gold Standard? Photomed. Laser Surg. 2017;35:513–514. doi: 10.1089/pho.2017.4323.
    1. Świder K., Dominiak M., Grzech-Leśniak K., Matys J. Effect of Different Laser Wavelengths on Periodontopathogens in Peri-Implantitis: A Review of In Vivo Studies. Microorganisms. 2019;7:189. doi: 10.3390/microorganisms7070189.
    1. Sulka A., Mierzwa-Dudek D., Dominiak M. 13 Years of Own Experience with the Use of Laser Biostimulation in Oral Surgery. Dent. Med. Probl. 2007;44:37–44.

Source: PubMed

3
Abonnere