Noninvasive Bimodal Neuromodulation for the Treatment of Tinnitus: Protocol for a Second Large-Scale Double-Blind Randomized Clinical Trial to Optimize Stimulation Parameters

Brendan Conlon, Caroline Hamilton, Stephen Hughes, Emma Meade, Deborah A Hall, Sven Vanneste, Berthold Langguth, Hubert H Lim, Brendan Conlon, Caroline Hamilton, Stephen Hughes, Emma Meade, Deborah A Hall, Sven Vanneste, Berthold Langguth, Hubert H Lim

Abstract

Background: There is increasing evidence from animal and human studies that bimodal neuromodulation combining sound and electrical somatosensory stimulation of the tongue can induce extensive brain changes and treat tinnitus.

Objective: The main objectives of the proposed clinical study are to confirm the efficacy, safety, and tolerability of treatment demonstrated in a previous large-scale study of bimodal auditory and trigeminal nerve (tongue) stimulation (Treatment Evaluation of Neuromodulation for Tinnitus - Stage A1); evaluate the therapeutic effects of adjusting stimulation parameters over time; and determine the contribution of different features of bimodal stimulation in improving tinnitus outcomes.

Methods: This study will be a prospective, randomized, double-blind, parallel-arm, comparative clinical trial of a 12-week treatment for tinnitus using a Conformité Européenne (CE)-marked device with a pre-post and 12-month follow-up design. Four treatment arms will be investigated, in which each arm consists of two different stimulation settings, with the first setting presented during the first 6 weeks and the second setting presented during the next 6 weeks of treatment. The study will enroll 192 participants, split in a ratio of 80:80:16:16 across the four arms. Participants will be randomized to one of four arms and stratified to minimize baseline variability in four categories: two separate strata for sound level tolerance (using loudness discomfort level as indicators for hyperacusis severity), high tinnitus symptom severity based on the Tinnitus Handicap Inventory (THI), and tinnitus laterality. The primary efficacy endpoints are within-arm changes in THI and Tinnitus Functional Index as well as between-arm changes in THI after 6 weeks of treatment for the full cohort and two subgroups of tinnitus participants (ie, one hyperacusis subgroup and a high tinnitus symptom severity subgroup). Additional efficacy endpoints include within-arm or between-arm changes in THI after 6 or 12 weeks of treatment and in different subgroups of tinnitus participants as well as at posttreatment assessments at 6 weeks, 6 months, and 12 months. Treatment safety, attrition rates, and compliance rates will also be assessed and reported.

Results: This study protocol was approved by the Tallaght University Hospital/St. James's Hospital Joint Research Ethics Committee in Dublin, Ireland. The first participant was enrolled on March 20, 2018. The data collection and database lock are expected to be completed by February 2020, and the data analysis and manuscript submission are expected to be conducted in autumn of 2020.

Conclusions: The findings of this study will be disseminated to relevant research, clinical, and health services and patient communities through publications in peer-reviewed journals and presentations at scientific and clinical conferences.

Trial registration: ClinicalTrials.gov NCT03530306; https://ichgcp.net/clinical-trials-registry/NCT03530306.

International registered report identifier (irrid): DERR1-10.2196/13176.

Keywords: auditory cortex; auditory nerve; bimodal; neuromodulation; pain; plasticity; precision medicine; tinnitus; trigeminal nerve; vagus nerve.

Conflict of interest statement

Conflicts of Interest: BC, CH, SH, EM, and HHL have financial interest and/or are employed by Neuromod Devices Limited. DAH, SV, and BL serve on the Scientific Advisory Board of Neuromod Devices Limited and receive financial compensation for their services to the company.

©Brendan Conlon, Caroline Hamilton, Stephen Hughes, Emma Meade, Deborah A Hall, Sven Vanneste, Berthold Langguth, Hubert H Lim. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 27.09.2019.

Figures

Figure 1
Figure 1
Bimodal sensory neuromodulation device (Lenire) for tinnitus treatment. The system developed by Neuromod Devices (Dublin, Ireland) consists of wireless high-fidelity circumaural headphones that deliver acoustic stimuli, a 32-site surface electrode array (tonguetip) for presenting electrical stimulus patterns to the anterior dorsal surface of the tongue, and a battery-powered controller that coordinates both stimulus modalities.
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/6789422/bin/resprot_v8i9e13176_fig2.jpg
Hypothesis testing accounting for multiple comparisons. The primary endpoints for the TENT-A2 study correspond to several parallel and serial hypotheses depicted in the figure. A P value of .05 is initially distributed across four hypotheses (H1a, H1b, H1c, H2a), in which the portion of the P value attributed to each hypothesis is indicated by the alpha value. For example, alpha equals 0.55 for H1a, which corresponds to the null hypothesis being rejected if P<.0275 (.55x.05). The null hypothesis for H1a is that there is no between-arm difference in changes in mean Tinnitus Functional Index score from enrollment to interim (6-week timepoint) between parameter setting (PS) 1 and PS6 for the full cohort of participants. The null hypothesis for H1b and H1c is that there is no between-arm difference in changes in mean THI score from enrollment to interim between PS1 and PS6 for the hyperacusis subgroup and high tinnitus symptom severity subgroup, respectively. Both are rejected if P<.01 (.2x.05). The null hypothesis for H2a is that there is no within-arm change in THI from baseline (average of screening and enrolment scores) to interim for the full cohort of participants. H2a is rejected if P<.0025 (.05x.05). Note that the remaining hypotheses (H2b, H2c, H2d, H2e, H2f) can only be tested if the previous hypothesis in the series is rejected. For example, if H2a is rejected, then its portion of the P value (P=.0025) is transferred to H2b for testing. If H2b is rejected, then its portion of the P> value (P=.0025) is transferred to H2c, and so on. Similarly, the arrows shown for the between-arm comparisons indicate that if any of the other hypotheses (for H1a, H1b, or H1c) are successfully rejected, then their portion of the P value is distributed to its neighbors based on the proportion labeled on each arrow. The null hypothesis for the within-arm comparisons (H2a to H2f) is that there is no within-arm change in THI or Tinnitus Functional Index from baseline to interim for the full cohort of participants, hyperacusis subgroup, or high tinnitus symptom severity subgroup. Note that all within-arm comparisons will be based on a two-sided paired (dependent) t test, while all between-arm comparisons will be based on a linear regression with independent variables of treatment arm and THI score at enrollment. Further details on the statistical analysis plan are provided in the Statistical Methods section. BL: baseline, EN: enrollment, IN: interim, Hyp: hyperacusis subgroup (loudness discomfort level <70 dB sensation level at 500 Hz at screening), High-THI: high tinnitus symptom severity subgroup (THI >56 points at screening); TFI: Tinnitus Functional Index; THI: Tinnitus Handicap Inventory.

References

    1. Davis A, Rafaie E. Epidemiology of tinnitus. In: Tyler RS, editor. Tinnitus Handbook. Clifton Park, New York: Cengage Learning; 2000. pp. 1–23.
    1. American Tinnitus Association. [2019-09-04]. Understanding the Facts .
    1. Eggermont JJ, Roberts LE. The neuroscience of tinnitus. Trends Neurosci. 2004 Nov;27(11):676–82. doi: 10.1016/j.tins.2004.08.010.
    1. Moller A, Langguth B, De Riddler D, Kleinjung T. Textbook of Tinnitus. New York: Springer Science+Business Media, LLC; 2011.
    1. Rauschecker JP, Leaver AM, Mühlau M. Tuning out the noise: limbic-auditory interactions in tinnitus. Neuron. 2010 Jun 24;66(6):819–26. doi: 10.1016/j.neuron.2010.04.032.
    1. Schaette R. Tinnitus in men, mice (as well as other rodents), and machines. Hear Res. 2014 May;311:63–71. doi: 10.1016/j.heares.2013.12.004.
    1. Roberts LE, Eggermont JJ, Caspary DM, Shore SE, Melcher JR, Kaltenbach JA. Ringing Ears: The Neuroscience of Tinnitus. Journal of Neuroscience. 2010 Nov 10;30(45):14972–14979. doi: 10.1523/jneurosci.4028-10.2010.
    1. Krauss P, Tziridis K, Metzner C, Schilling A, Hoppe U, Schulze H. Stochastic Resonance Controlled Upregulation of Internal Noise after Hearing Loss as a Putative Cause of Tinnitus-Related Neuronal Hyperactivity. Front Neurosci. 2016 Dec;10:597. doi: 10.3389/fnins.2016.00597. doi: 10.3389/fnins.2016.00597.
    1. Yost W. Fundamentals of Hearing: An Introduction. New York: Academic Press; 2000.
    1. Ehret G, Romand R. The Central Auditory System. New York: Oxford University Press, Inc; 1997.
    1. Rees A, Palmer A. The Auditory Brain. New York: Oxford University Press; 2010.
    1. Winer JA. Decoding the auditory corticofugal systems. Hearing Research. 2006 Feb;212(1-2):1–8. doi: 10.1016/j.heares.2005.06.014.
    1. Suga N, Ji W, Ma X, Tang J, Xiao Z, Yan J. Corticofugal modulation and beyond for auditory signal processing and plasticity. In: Ryugo DK, Fay RR, Popper AN, editors. Auditory and Vestibular Efferents. New York: Springer Sciences+Business Media; 2011. pp. 313–52.
    1. Winkowski DE, Nagode DA, Donaldson KJ, Yin P, Shamma SA, Fritz JB, Kanold PO. Orbitofrontal Cortex Neurons Respond to Sound and Activate Primary Auditory Cortex Neurons. Cereb Cortex. 2018 Mar 01;28(3):868–879. doi: 10.1093/cercor/bhw409.
    1. Fritz JB, David SV, Radtke-Schuller S, Yin P, Shamma SA. Adaptive, behaviorally gated, persistent encoding of task-relevant auditory information in ferret frontal cortex. Nat Neurosci. 2010 Aug;13(8):1011–9. doi: 10.1038/nn.2598.
    1. Markovitz CD, Hogan PS, Wesen KA, Lim HH. Pairing broadband noise with cortical stimulation induces extensive suppression of ascending sensory activity. J Neural Eng. 2015 Apr;12(2):026006. doi: 10.1088/1741-2560/12/2/026006.
    1. Gruters KG, Groh JM. Sounds and beyond: multisensory and other non-auditory signals in the inferior colliculus. Front Neural Circuits. 2012;6:96. doi: 10.3389/fncir.2012.00096. doi: 10.3389/fncir.2012.00096.
    1. Murray MM, Wallace MT. The neural bases of multisensory processes. Boca Raton: CRC Press; 2011.
    1. Marsh RA, Fuzessery ZM, Grose CD, Wenstrup JJ. Projection to the Inferior Colliculus from the Basal Nucleus of the Amygdala. J Neurosci. 2002 Dec 01;22(23):10449–10460. doi: 10.1523/jneurosci.22-23-10449.2002.
    1. Markovitz CD, Smith BT, Gloeckner CD, Lim HH. Investigating a new neuromodulation treatment for brain disorders using synchronized activation of multimodal pathways. Sci Rep. 2015 Mar 25;5:9462. doi: 10.1038/srep09462. doi: 10.1038/srep09462.
    1. Hurley LM, Sullivan MR. From behavioral context to receptors: serotonergic modulatory pathways in the IC. Front Neural Circuits. 2012;6:58. doi: 10.3389/fncir.2012.00058. doi: 10.3389/fncir.2012.00058.
    1. Schofield BR, Motts SD, Mellott JG. Cholinergic cells of the pontomesencephalic tegmentum: connections with auditory structures from cochlear nucleus to cortex. Hear Res. 2011 Sep;279(1-2):85–95. doi: 10.1016/j.heares.2010.12.019.
    1. Aitkin LM, Kenyon CE, Philpott P. The representation of the auditory and somatosensory systems in the external nucleus of the cat inferior colliculus. J Comp Neurol. 1981 Feb 10;196(1):25–40. doi: 10.1002/cne.901960104.
    1. Basura GJ, Koehler SD, Shore SE. Multi-sensory integration in brainstem and auditory cortex. Brain Res. 2012 Nov 16;1485:95–107. doi: 10.1016/j.brainres.2012.08.037.
    1. Hormigo S, Horta Júnior JDADCE, Gómez-Nieto R, López DE. The selective neurotoxin DSP-4 impairs the noradrenergic projections from the locus coeruleus to the inferior colliculus in rats. Front Neural Circuits. 2012;6:41. doi: 10.3389/fncir.2012.00041. doi: 10.3389/fncir.2012.00041.
    1. Levine RA. Somatic (craniocervical) tinnitus and the dorsal cochlear nucleus hypothesis. American Journal of Otolaryngology. 1999 Nov;20(6):351–362. doi: 10.1016/s0196-0709(99)90074-1.
    1. Young ED, Nelken I, Conley RA. Somatosensory effects on neurons in dorsal cochlear nucleus. J Neurophysiol. 1995 Feb;73(2):743–65. doi: 10.1152/jn.1995.73.2.743.
    1. Langers DRM, de Kleine E, van Dijk P. Tinnitus does not require macroscopic tonotopic map reorganization. Front Syst Neurosci. 2012;6:2. doi: 10.3389/fnsys.2012.00002. doi: 10.3389/fnsys.2012.00002.
    1. Makin TR, Scholz J, Henderson Slater D, Johansen-Berg H, Tracey I. Reassessing cortical reorganization in the primary sensorimotor cortex following arm amputation. Brain. 2015 Aug;138(Pt 8):2140–6. doi: 10.1093/brain/awv161.
    1. De Ridder D, Vanneste S, Weisz N, Londero A, Schlee W, Elgoyhen AB, Langguth B. An integrative model of auditory phantom perception: tinnitus as a unified percept of interacting separable subnetworks. Neurosci Biobehav Rev. 2014 Jul;44:16–32. doi: 10.1016/j.neubiorev.2013.03.021.
    1. De Ridder D, Elgoyhen AB, Romo R, Langguth B. Phantom percepts: tinnitus and pain as persisting aversive memory networks. Proc Natl Acad Sci U S A. 2011 May 17;108(20):8075–80. doi: 10.1073/pnas.1018466108.
    1. Folmer RL, Martin WH, Shi Y, Edlefsen L. Tinnitus sound therapies. In: Tyler RS, editor. Tinnitus treatment: Clinical protocols. Stuttgart, Germany: Thieme; 2006. pp. 176–86.
    1. Henry JA, Zaugg TL, Myers PJ, Schechter MA. Using therapeutic sound with progressive audiologic tinnitus management. Trends Amplif. 2008 Sep;12(3):188–209. doi: 10.1177/1084713808321184.
    1. Hoare DJ, Edmondson-Jones M, Sereda M, Akeroyd MA, Hall D. Amplification with hearing aids for patients with tinnitus and co-existing hearing loss. Cochrane Database Syst Rev. 2014 Jan 31;(1):CD010151. doi: 10.1002/14651858.CD010151.pub2.
    1. Pienkowski M. Rationale and Efficacy of Sound Therapies for Tinnitus and Hyperacusis. Neuroscience. 2019 May 21;407:120–134. doi: 10.1016/j.neuroscience.2018.09.012.
    1. Hobson J, Chisholm E, El Refaie Amr. Sound therapy (masking) in the management of tinnitus in adults. Cochrane Database Syst Rev. 2012 Nov 14;11:CD006371. doi: 10.1002/14651858.CD006371.pub3.
    1. Engineer ND, Riley JR, Seale JD, Vrana WA, Shetake JA, Sudanagunta SP, Borland MS, Kilgard MP. Reversing pathological neural activity using targeted plasticity. Nature. 2011 Feb 03;470(7332):101–4. doi: 10.1038/nature09656.
    1. Koehler SD, Shore SE. Stimulus-timing dependent multisensory plasticity in the guinea pig dorsal cochlear nucleus. PLoS One. 2013 Mar;8(3):e59828. doi: 10.1371/journal.pone.0059828.
    1. Ma X, Suga N. Augmentation of plasticity of the central auditory system by the basal forebrain and/or somatosensory cortex. J Neurophysiol. 2003 Jan;89(1):90–103. doi: 10.1152/jn.00968.2001.
    1. Weinberger NM. Associative representational plasticity in the auditory cortex: a synthesis of two disciplines. Learn Mem. 2007 Jan;14(1-2):1–16. doi: 10.1101/lm.421807.
    1. De Ridder D, Vanneste S, Engineer ND, Kilgard MP. Safety and efficacy of vagus nerve stimulation paired with tones for the treatment of tinnitus: a case series. Neuromodulation. 2014 Feb;17(2):170–9. doi: 10.1111/ner.12127.
    1. Hamilton C, D'Arcy S, Pearlmutter BA, Crispino G, Lalor EC, Conlon BJ. An Investigation of Feasibility and Safety of Bi-Modal Stimulation for the Treatment of Tinnitus: An Open-Label Pilot Study. Neuromodulation. 2016 Dec;19(8):832–837. doi: 10.1111/ner.12452.
    1. O'Neill R, Hamilton C, Pearlmutter B, Crispino G, Hughes S, Conlon B. Impact of Acoustic and Tactile Multi-modal Neuromodulation on Objective and Subjective Measures of Permanent Intractable Tinnitus. Irish Journal of Medical Science. 2013;182:518–9.
    1. Marks KL, Martel DT, Wu C, Basura GJ, Roberts LE, Schvartz-Leyzac KC, Shore SE. Auditory-somatosensory bimodal stimulation desynchronizes brain circuitry to reduce tinnitus in guinea pigs and humans. Sci Transl Med. 2018 Jan 03;10(422) doi: 10.1126/scitranslmed.aal3175.
    1. Offutt SJ, Ryan KJ, Konop AE, Lim HH. Suppression and facilitation of auditory neurons through coordinated acoustic and midbrain stimulation: investigating a deep brain stimulator for tinnitus. J Neural Eng. 2014 Dec;11(6):066001. doi: 10.1088/1741-2560/11/6/066001.
    1. Vanneste S, Plazier M, Van de Heyning P, De Ridder D. Transcutaneous electrical nerve stimulation (TENS) of upper cervical nerve (C2) for the treatment of somatic tinnitus. Exp Brain Res. 2010 Jul;204(2):283–7. doi: 10.1007/s00221-010-2304-5.
    1. Levine RA, Nam EC, Oron Y, Melcher JR. Evidence for a tinnitus subgroup responsive to somatosensory based treatment modalities. Prog Brain Res. 2007;166:195–207. doi: 10.1016/S0079-6123(07)66017-8.
    1. Shore SE, Roberts LE, Langguth B. Maladaptive plasticity in tinnitus--triggers, mechanisms and treatment. Nat Rev Neurol. 2016 Mar;12(3):150–60. doi: 10.1038/nrneurol.2016.12.
    1. Gloeckner CD, Smith BT, Markovitz CD, Lim HH. A new concept for noninvasive tinnitus treatment utilizing multimodal pathways. Conf Proc IEEE Eng Med Biol Soc; Conf Proc IEEE Eng Med Biol Soc; 2013; Osaka, Japan. 2013. pp. 3122–5.
    1. Ledoux JE, Ruggiero DA, Forest R, Stornetta R, Reis DJ. Topographic organization of convergent projections to the thalamus from the inferior colliculus and spinal cord in the rat. J Comp Neurol. 1987 Oct 01;264(1):123–46. doi: 10.1002/cne.902640110.
    1. Robards MJ. Somatic neurons in the brainstem and neocortex projecting to the external nucleus of the inferior colliculus: an anatomical study in the opossum. J Comp Neurol. 1979 Apr 01;184(3):547–65. doi: 10.1002/cne.901840308.
    1. Itoh K, Kamiya H, Mitani A, Yasui Y, Takada M, Mizuno N. Direct projections from the dorsal column nuclei and the spinal trigeminal nuclei to the cochlear nuclei in the cat. Brain Research. 1987 Jan;400(1):145–150. doi: 10.1016/0006-8993(87)90662-7.
    1. Tyler R, Cacace A, Stocking C, Tarver B, Engineer N, Martin J, Deshpande A, Stecker N, Pereira M, Kilgard M, Burress C, Pierce D, Rennaker R, Vanneste S. Vagus Nerve Stimulation Paired with Tones for the Treatment of Tinnitus: A Prospective Randomized Double-blind Controlled Pilot Study in Humans. Sci Rep. 2017 Sep 20;7(1):11960. doi: 10.1038/s41598-017-12178-w. doi: 10.1038/s41598-017-12178-w.
    1. Lehtimäki J, Hyvärinen P, Ylikoski M, Bergholm M, Mäkelä JP, Aarnisalo A, Pirvola U, Mäkitie A, Ylikoski J. Transcutaneous vagus nerve stimulation in tinnitus: a pilot study. Acta Otolaryngol. 2013 Apr;133(4):378–82. doi: 10.3109/00016489.2012.750736.
    1. Kreuzer PM, Landgrebe M, Resch M, Husser O, Schecklmann M, Geisreiter F, Poeppl TB, Prasser SJ, Hajak G, Rupprecht R, Langguth B. Feasibility, safety and efficacy of transcutaneous vagus nerve stimulation in chronic tinnitus: an open pilot study. Brain Stimul. 2014 Sep;7(5):740–7. doi: 10.1016/j.brs.2014.05.003.
    1. Choi WS, Kim SJ, Chang DS, Lee HY. Characteristics of Stimulus Intensity in Transcutaneous Vagus Nerve Stimulation for Chronic Tinnitus. Int Adv Otol. 2018 Aug 16;14(2):267–272. doi: 10.5152/iao.2018.3977.
    1. Hoare DJ, Kowalkowski VL, Kang S, Hall DA. Systematic review and meta-analyses of randomized controlled trials examining tinnitus management. Laryngoscope. 2011 Jul;121(7):1555–64. doi: 10.1002/lary.21825. doi: 10.1002/lary.21825.
    1. Landgrebe M, Azevedo A, Baguley D, Bauer C, Cacace A, Coelho C, Dornhoffer J, Figueiredo R, Flor H, Hajak G, van de Heyning P, Hiller W, Khedr E, Kleinjung T, Koller M, Lainez JM, Londero A, Martin WH, Mennemeier M, Piccirillo J, De Ridder D, Rupprecht R, Searchfield G, Vanneste S, Zeman F, Langguth B. Methodological aspects of clinical trials in tinnitus: a proposal for an international standard. J Psychosom Res. 2012 Aug;73(2):112–21. doi: 10.1016/j.jpsychores.2012.05.002.
    1. D'Arcy S, Hamilton C, Hughes S, Hall DA, Vanneste S, Langguth B, Conlon B. Bi-modal stimulation in the treatment of tinnitus: a study protocol for an exploratory trial to optimise stimulation parameters and patient subtyping. BMJ Open. 2017 Oct 25;7(10):e018465. doi: 10.1136/bmjopen-2017-018465.
    1. Lim HH, Hamilton C, Hughes S, Vanneste S, Hall DA, Langguth B, Conlon B. New Bimodal Neuromodulation Treatment for Tinnitus in 326 Patients. The 45th Annual Scientific and Technology Conference of the American Auditory Society; 2018; Scottsdale, Arizona. 2018.
    1. Chan A, Tetzlaff J, Gøtzsche PC, Altman D, Mann H, Berlin J, Dickersin K, Hróbjartsson A, Schulz KF, Parulekar WR, Krleza-Jeric K, Laupacis A, Moher D. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013 Jan 08;346:e7586. doi: 10.1136/bmj.e7586.
    1. Spielberger C, Gorsuch R, Lushene R, Vagg P, Jacobs G. Manual for the state-trait anxiety inventory. Palo Alto, CA: Consulting Psychologists Press; 1983.
    1. Kvaal K, Ulstein I, Nordhus IH, Engedal K. The Spielberger State-Trait Anxiety Inventory (STAI): the state scale in detecting mental disorders in geriatric patients. Int J Geriatr Psychiatry. 2005 Jul;20(7):629–34. doi: 10.1002/gps.1330.
    1. Folstein M F, Folstein S E, McHugh P R. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975 Nov;12(3):189–98.
    1. Newman CW, Jacobson GP, Spitzer JB. Development of the Tinnitus Handicap Inventory. Archives of Otolaryngology - Head and Neck Surgery. 1996 Feb 01;122(2):143–148. doi: 10.1001/archotol.1996.01890140029007.
    1. Meikle Mary B, Henry James A, Griest Susan E, Stewart Barbara J, Abrams Harvey B, McArdle Rachel, Myers Paula J, Newman Craig W, Sandridge Sharon, Turk Dennis C, Folmer Robert L, Frederick Eric J, House John W, Jacobson Gary P, Kinney Sam E, Martin William H, Nagler Stephen M, Reich Gloria E, Searchfield Grant, Sweetow Robert, Vernon Jack A. The tinnitus functional index: development of a new clinical measure for chronic, intrusive tinnitus. Ear Hear. 2012;33(2):153–76. doi: 10.1097/AUD.0b013e31822f67c0.
    1. Fackrell K, Hall DA, Barry JG, Hoare DJ. Psychometric properties of the Tinnitus Functional Index (TFI): Assessment in a UK research volunteer population. Hear Res. 2016 May;335:220–235. doi: 10.1016/j.heares.2015.09.009.
    1. Henry JA, Meikle MB. Psychoacoustic measures of tinnitus. J Am Acad Audiol. 2000 Mar;11(3):138–55.
    1. Henry JA, James KE, Owens K, Zaugg T, Porsov E, Silaski G. Auditory test result characteristics of subjects with and without tinnitus. JRRD. 2009;46(5):619. doi: 10.1682/jrrd.2008.11.0157.
    1. Adamchic I, Langguth B, Hauptmann C, Alexander Tass P. Psychometric Evaluation of Visual Analog Scale for the Assessment of Chronic Tinnitus. Am J Audiol. 2012 Dec;21(2):215–225. doi: 10.1044/1059-0889(2012/12-0010).
    1. Hall DA, Mehta RL, Fackrell K. How to Choose Between Measures of Tinnitus Loudness for Clinical Research? A Report on the Reliability and Validity of an Investigator-Administered Test and a Patient-Reported Measure Using Baseline Data Collected in a Phase IIa Drug Trial. Am J Audiol. 2017 Sep 18;26(3):338–346. doi: 10.1044/2017_aja-16-0129.
    1. . [2019-09-11]. About the Trial
    1. Zeman F, Koller M, Figueiredo R, Aazevedo A, Rates M, Coelho C, Kleinjung T, de Ridder D, Langguth B, Landgrebe M. Tinnitus handicap inventory for evaluating treatment effects: which changes are clinically relevant? Otolaryngol Head Neck Surg. 2011 Aug;145(2):282–7. doi: 10.1177/0194599811403882.
    1. Pocock SJ, Simon R. Sequential Treatment Assignment with Balancing for Prognostic Factors in the Controlled Clinical Trial. Biometrics. 1975 Mar;31(1):103. doi: 10.2307/2529712.
    1. Wang D, Li Y, Wang X, Liu X, Fu B, Lin Y, Larsen L, Offen W. Overview of multiple testing methodology and recent development in clinical trials. Contemp Clin Trials. 2015 Nov;45(Pt A):13–20. doi: 10.1016/j.cct.2015.07.014.
    1. Rubin DB. Multiple imputation for nonresponse in surveys. Hoboken, NJ: John Wiley & Sons; 2004.
    1. Schafer JL. Analysis of incomplete multivariate data. New York: Chapman and Hall/CRC; 1997.
    1. Schulz KF, Altman DG, Moher D, CONSORT Group CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. BMC Med. 2010 Mar 24;8:18. doi: 10.1186/1741-7015-8-18.
    1. Hall DA, Haider H, Szczepek AJ, Lau P, Rabau S, Jones-Diette J, Londero A, Edvall NK, Cederroth CR, Mielczarek M, Fuller T, Batuecas-Caletrio A, Brueggemen P, Thompson DM, Norena A, Cima RFF, Mehta RL, Mazurek B. Systematic review of outcome domains and instruments used in clinical trials of tinnitus treatments in adults. Trials. 2016 Jun 01;17(1):270. doi: 10.1186/s13063-016-1399-9.
    1. Hall DA, Haider H, Kikidis D, Mielczarek M, Mazurek B, Szczepek AJ, Cederroth CR. Toward a Global Consensus on Outcome Measures for Clinical Trials in Tinnitus: Report From the First International Meeting of the COMiT Initiative, November 14, 2014, Amsterdam, The Netherlands. Trends Hear. 2015 Apr 24;19 doi: 10.1177/2331216515580272.

Source: PubMed

3
Abonnere