The Image Quality and Diagnostic Performance of CT with Low-Concentration Iodine Contrast (240 mg Iodine/mL) for the Abdominal Organs

Moon-Hyung Choi, Young-Joon Lee, Seung-Eun Jung, Moon-Hyung Choi, Young-Joon Lee, Seung-Eun Jung

Abstract

Purpose: To evaluate the difference between CT examinations using 240 mgI/mL contrast material (CM) and 320 mgI/mL CM in the contrast enhancement of the abdominal organs and the diagnostic performance for focal hepatic lesions. Materials and methods: This retrospective study included 422 CT examinations, using 240 mgI/mL iohexol (Group A, 206 examinations) and 320 mgI/mL ioversol (Group B, 216 examinations), performed between April 2019 and May 2020. Two CT scanners (single-source CT (machine A) and dual-source CT (machine B)) were used to obtain CT images. Two radiologists independently drew regions of interest (ROIs) in the liver, pancreas, spleen, kidney, aorta, portal vein, and paraspinal muscle. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated for each organ. They evaluated the degree of subjective enhancement of the organs and detected/differentiated focal hepatic lesions. Results: The SNR, CNR, and subjective enhancement of most organs were significantly higher in Group B than in Group A (p < 0.05). The sensitivity and specificity for cysts and malignancy were higher than 85.0% in both groups. The sensitivity for hemangioma was lower in Group B (<75%) than in Group A. In Group A, the SNR and CNR were significantly higher in most organs with machine B than with machine A. Conclusion: Although the SNR and CNR of the abdominal organs were lower with 240 mgI/mL CM than with 320 mgI/mL CM, 240 mgI/mL CM was feasible for evaluating the liver. A CT scanner with more advanced specifications may be beneficial for examinations with 240 mgI/mL CM by using lower tube voltage.

Keywords: computed tomography; contrast media; enhancement; iodine concentration: image quality.

Conflict of interest statement

M.H.C. is currently receiving a research grant from Siemens Healthineers for the topic not related to the current research. For the remaining authors, none were declared.

Figures

Figure 1
Figure 1
Quantitative analysis of the CT images A radiologist draws multiple regions of interest in the liver, pancreas, spleen, portal vein, and aorta (a) and in the kidney and paraspinal muscle (b).
Figure 2
Figure 2
Differences in the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) between the two machines in each group SNR and CNR of the organs in Group A (a,b) and Group B (c,d), respectively. * p < 0.05; ** p < 0.01; *** p < 0.001.
Figure 2
Figure 2
Differences in the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) between the two machines in each group SNR and CNR of the organs in Group A (a,b) and Group B (c,d), respectively. * p < 0.05; ** p < 0.01; *** p < 0.001.
Figure 3
Figure 3
A 64-year-old female patient who underwent CT examinations using the same machine (machine B). An approximately 0.7-cm cyst is noted in liver segment 8 on both CT examinations with 240 mgI/mL contrast material (a) and 320 mgI/mL contrast material (b).

References

    1. Isaka Y., Hayashi H., Aonuma K., Horio M., Terada Y., Doi K., Fujigaki Y., Yasuda H., Sato T., Fujikura T., et al. Guideline on the use of iodinated contrast media in patients with kidney disease 2018. Clin. Exp. Nephrol. 2020;24:1–44. doi: 10.1007/s10157-019-01750-5.
    1. American College of Radiology . ACR Manual on Contrast Media. ACR; Reston, VA, USA: 2020.
    1. European Society of Urogenital Radiology . ESUR Guidelines on Contrast Agents v10.0. ESUR; Wien, Austria: 2018.
    1. Katzberg R.W., Newhouse J.H. Intravenous Contrast Medium–induced Nephrotoxicity: Is the Medical Risk Really as Great as We Have Come to Believe? Radiology. 2010;256:21–28. doi: 10.1148/radiol.10092000.
    1. Katzberg R.W., Lamba R. Contrast-Induced Nephropathy after Intravenous Administration: Fact or Fiction? Radiol. Clin. N. Am. 2009;47:789–800. doi: 10.1016/j.rcl.2009.06.002.
    1. Weisbord S.D., Mor M.K., Resnick A.L., Hartwig K.C., Palevsky P.M., Fine M.J. Incidence and Outcomes of Contrast-Induced AKI Following Computed Tomography. Clin. J. Am. Soc. Nephrol. 2008;3:1274–1281. doi: 10.2215/CJN.01260308.
    1. Davenport M.S., Khalatbari S., Dillman J.R., Cohan R.H., Caoili E.M., Ellis J.H. Contrast Material–induced Nephrotoxicity and Intravenous Low-Osmolality Iodinated Contrast Material. Radiology. 2013;267:94–105. doi: 10.1148/radiol.12121394.
    1. Lencioni R., Fattori R., Morana G., Stacul F., The Italian Observational Study Panel Contrast-induced nephropathy in patients undergoing computed tomography (CONNECT)—A clinical problem in daily practice? A multicenter observational study. Acta Radiol. 2010;51:741–750. doi: 10.3109/02841851.2010.495350.
    1. Chua H.-R., Low S., Murali T.M., Wong E.T.-Y., He H.-D., Teo B.-W., Thian Y.-L., Akalya K., Vathsala A. Cumulative iodinated contrast exposure for computed tomography during acute kidney injury and major adverse kidney events. Eur. Radiol. 2021;31:3258–3266. doi: 10.1007/s00330-020-07428-x.
    1. From A.M., Bartholmai B., Williams A.W., Cha S.S., McDonald F.S. Mortality Associated With Nephropathy After Radiographic Contrast Exposure. Mayo Clin. Proc. 2008;83:1095–1100. doi: 10.4065/83.10.1095.
    1. Nyman U., Almén T., Aspelin P., Hellström M., Kristiansson M., Sterner G. Contrast-medium-induced nephropathy correlated to the ratio between dose in gram iodine and estimated gfr in ml/min. Acta Radiol. 2005;46:830–842. doi: 10.1080/02841850500335051.
    1. Limbruno U., Picchi A., Micheli A., Calabria P., Cortese B., Brizi G., Severi S., De Caterina R. Refining the assessment of contrast-induced acute kidney injury: The load-to-damage relationship. J. Cardiovasc. Med. 2014;15:587–594. doi: 10.2459/JCM.0b013e3283638e56.
    1. Morcos S. Contrast-induced nephropathy: Are there differences between low osmolar and iso-osmolar iodinated contrast media? Clin. Radiol. 2009;64:468–472. doi: 10.1016/j.crad.2008.08.019.
    1. Paparo F., Garello I., Bacigalupo L., Marziano A., Pregliasco A.G., Rollandi L., Puppo C., Mattioli F., Puntoni M., Rollandi G.A. CT of the abdomen: Degree and quality of enhancement obtained with two concentrations of the same iodinated contrast medium with fixed iodine delivery rate and total iodine load. Eur. J. Radiol. 2014;83:1995–2000. doi: 10.1016/j.ejrad.2014.07.010.
    1. Matoba M., Kitadate M., Kondou T., Yokota H., Tonami H. Depiction of Hypervascular Hepatocellular Carcinoma With 64-MDCT: Comparison of Moderate- and High-Concentration Contrast Material with and without Saline Flush. Am. J. Roentgenol. 2009;193:738–744. doi: 10.2214/AJR.08.2028.
    1. Awai K., Takada K., Onishi H., Hori S. Aortic and Hepatic Enhancement and Tumor-to-Liver Contrast: Analysis of the Effect of Different Concentrations of Contrast Material at Multi–Detector Row Helical CT. Radiology. 2002;224:757–763. doi: 10.1148/radiol.2243011188.
    1. Hänninen E.L., Vogl T.J., Felfe R., Pegios W., Balzer J., Clauss W., Felix R. Detection of Focal Liver Lesions at Biphasic Spiral CT: Randomized Double-Blind Study of the Effect of Iodine Concentration in Contrast Materials. Radiology. 2000;216:403–409. doi: 10.1148/radiology.216.2.r00au03403.
    1. Furuta A., Ito K., Fujita T., Koike S., Shimizu A., Matsunaga N. Hepatic Enhancement in Multiphasic Contrast-Enhanced MDCT: Comparison of High- and Low-Iodine-Concentration Contrast Medium in Same Patients with Chronic Liver Disease. Am. J. Roentgenol. 2004;183:157–162. doi: 10.2214/ajr.183.1.1830157.
    1. Kim T., Murakami T., Takahashi S., Okada A., Hori M., Narumi Y., Nakamura H. Pancreatic CT Imaging: Effects of Different Injection Rates and Doses of Contrast Material. Radiology. 1999;212:219–225. doi: 10.1148/radiology.212.1.r99jl06219.
    1. Hwang I., Cho J.Y., Kim S.Y., Oh S.-J., Ku J.H., Lee J., Kim S.H. Low tube voltage computed tomography urography using low-concentration contrast media: Comparison of image quality in conventional computed tomography urography. Eur. J. Radiol. 2015;84:2454–2463. doi: 10.1016/j.ejrad.2015.09.010.
    1. Kim S.Y., Cho J.Y., Lee J., Hwang S.I., Moon M.H., Lee E.J., Hong S.S., Kim C.K., Kim K.A., Bin Park S., et al. Low-Tube-Voltage CT Urography Using Low-Concentration-Iodine Contrast Media and Iterative Reconstruction: A Multi-Institutional Randomized Controlled Trial for Comparison with Conventional CT Urography. Korean J. Radiol. 2018;19:1119–1129. doi: 10.3348/kjr.2018.19.6.1119.
    1. Botsikas D., Barnaure I., Terraz S., Becker C.D., Kalovidouri A., Montet X. Value of liver computed tomography with iodixanol 270, 80 kVp and iterative reconstruction. World J. Radiol. 2016;8:693–699. doi: 10.4329/wjr.v8.i7.693.
    1. Ichikawa S., Motosugi U., Shimizu T., Kromrey M.L., Aikawa Y., Tamada D., Onishi H. Diagnostic performance and image quality of low-tube voltage and low-contrast medium dose protocol with hybrid iterative reconstruction for hepatic dynamic CT. Br. J. Radiol. 2021;94:20210601. doi: 10.1259/bjr.20210601.
    1. Taguchi N., Oda S., Utsunomiya D., Funama Y., Nakaura T., Imuta M., Yamamura S., Yuki H., Kidoh M., Hirata K., et al. Using 80 kVp on a 320-row scanner for hepatic multiphasic CT reduces the contrast dose by 50 % in patients at risk for contrast-induced nephropathy. Eur. Radiol. 2017;27:812–820. doi: 10.1007/s00330-016-4435-y.
    1. Zhang H., Ma Y., Lyu J., Yang Y., Yuan W., Song Z. Low kV and Low Concentration Contrast Agent with Iterative Reconstruction of Computed Tomography (CT) Coronary Angiography: A Preliminary Study. Med Sci. Monit. 2017;23:5005–5010. doi: 10.12659/MSM.904251.
    1. Marcus R.P., Koerner E., Aydin R.C., Zinsser D., Finke T., Cyron C.J., Bamberg F., Nikolaou K., Notohamiprodjo M. The evolution of radiation dose over time: Measurement of a patient cohort undergoing whole-body examinations on three computer tomography generations. Eur. J. Radiol. 2017;86:63–69. doi: 10.1016/j.ejrad.2016.11.002.
    1. Wichmann J.L., Hardie A.D., Schoepf U.J., Felmly L.M., Perry J.D., Varga-Szemes A., Mangold S., Caruso D., Canstein C., Vogl T.J., et al. Single- and dual-energy CT of the abdomen: Comparison of radiation dose and image quality of 2nd and 3rd generation dual-source CT. Eur. Radiol. 2017;27:642–650. doi: 10.1007/s00330-016-4383-6.
    1. Park C., Gruber-Rouh T., Leithner D., Zierden A., Albrecht M.H., Wichmann J.L., Bodelle B., Elsabaie M., Scholtz J.-E., Kaup M., et al. Single-source chest-abdomen-pelvis cancer staging on a third generation dual-source CT system: Comparison of automated tube potential selection to second generation dual-source CT. Cancer Imaging. 2016;16:1–7. doi: 10.1186/s40644-016-0093-1.
    1. Scholtz J.E., Wichmann J.L., Hüsers K., Beeres M., Nour-Eldin N.E.A., Frellesen C., Vogl T.J., Lehnert T. Automated tube voltage adaptation in combination with advanced modeled iterative reconstruction in thoracoabdominal third-generation 192-slice dual-source computed tomography: Effects on image quality and radiation dose. Acad. Radiol. 2015;22:1081–1087. doi: 10.1016/j.acra.2015.05.010.
    1. Lee K.H., Lee J.M., Moon S.K., Baek J.H., Park J.H., Flohr T.G., Kim K.W., Kim S.J., Han J.K., Choi B.I. Attenuation-based Automatic Tube Voltage Selection and Tube Current Modulation for Dose Reduction at Contrast-enhanced Liver CT. Radiology. 2012;265:437–447. doi: 10.1148/radiol.12112434.
    1. Mayer C., Meyer M., Fink C., Schmidt B., Sedlmair M., Schoenberg S.O., Henzler T. Potential for Radiation Dose Savings in Abdominal and Chest CT Using Automatic Tube Voltage Selection in Combination With Automatic Tube Current Modulation. Am. J. Roentgenol. 2014;203:292–299. doi: 10.2214/AJR.13.11628.
    1. Nakayama Y., Awai K., Funama Y., Hatemura M., Imuta M., Nakaura T., Ryu D., Morishita S., Sultana S., Sato N., et al. Abdominal CT with Low Tube Voltage: Preliminary Observations about Radiation Dose, Contrast Enhancement, Image Quality, and Noise 1. Radiology. 2005;237:945–951. doi: 10.1148/radiol.2373041655.
    1. Araki K., Yoshizako T., Yoshida R., Tada K., Kitagaki H. Low-voltage (80-kVp) abdominopelvic computed tomography allows 60% contrast dose reduction in patients at risk of contrast-induced nephropathy. Clin. Imaging. 2018;51:352–355. doi: 10.1016/j.clinimag.2018.05.027.
    1. Nakaura T., Nakamura S., Maruyama N., Funama Y., Awai K., Harada K., Uemura S., Yamashita Y. Low Contrast Agent and Radiation Dose Protocol for Hepatic Dynamic CT of Thin Adults at 256–Detector Row CT: Effect of Low Tube Voltage and Hybrid Iterative Reconstruction Algorithm on Image Quality. Radiology. 2012;264:445–454. doi: 10.1148/radiol.12111082.

Source: PubMed

3
Abonnere