Reading the dyslexic brain: multiple dysfunctional routes revealed by a new meta-analysis of PET and fMRI activation studies

Eraldo Paulesu, Laura Danelli, Manuela Berlingeri, Eraldo Paulesu, Laura Danelli, Manuela Berlingeri

Abstract

Developmental dyslexia has been the focus of much functional anatomical research. The main trust of this work is that typical developmental dyslexics have a dysfunction of the phonological and orthography to phonology conversion systems, in which the left occipito-temporal cortex has a crucial role. It remains to be seen whether there is a systematic co-occurrence of dysfunctional patterns of different functional systems perhaps converging on the same brain regions associated with the reading deficit. Such evidence would be relevant for theories like, for example, the magnocellular/attentional or the motor/cerebellar ones, which postulate a more basic and anatomically distributed disorder in dyslexia. We addressed this issue with a meta-analysis of all the imaging literature published until September 2013 using a combination of hierarchical clustering and activation likelihood estimation methods. The clustering analysis on 2360 peaks identified 193 clusters, 92 of which proved spatially significant. Following binomial tests on the clusters, we found left hemispheric network specific for normal controls (i.e., of reduced involvement in dyslexics) including the left inferior frontal, premotor, supramarginal cortices and the left infero-temporal and fusiform regions: these were preferentially associated with reading and the visual-to-phonology processes. There was also a more dorsal left fronto-parietal network: these clusters included peaks from tasks involving phonological manipulation, but also motoric or visuo-spatial perception/attention. No cluster was identified in area V5 for no task, nor cerebellar clusters showed a reduced association with dyslexics. We conclude that the examined literature demonstrates a specific lack of activation of the left occipito-temporal cortex in dyslexia particularly for reading and reading-like behaviors and for visuo-phonological tasks. Additional deficits of motor and attentional systems relevant for reading may be associated with altered functionality of dorsal left fronto-parietal cortex.

Keywords: ALE; PET; developmental dyslexia; fMRI; hierarchical clustering; meta-analysis.

Figures

Figure 1
Figure 1
Peaks of reduced activations in dyslexia for all tasks that involved reading (circles in red), for visual or auditory phonological tasks (circles in blue and in green, respectively) and for non-linguistic tasks (circles in yellow). (A) Show the highly replicated reduction of dyslexics at the level of the left ventral occipito-temporal peaks reported in literature. In (B) all the peaks of reduced activations observed in dyslexics during reading tasks included in our meta-analysis are reported. Finally, in (C) all the peaks of reduced activations observed in dyslexics during reading, phonological and non-linguistic tasks included in our meta-analysis are reported.
Figure 2
Figure 2
A schematic flowchart diagram showing the procedure by which data are selected, clusters are estimated, tested and classified using HC and ALE.
Figure 3
Figure 3
Clusters identified with HC (A), clusters identified using ALE approach (B) and the final data-set of clusters, identified in both HC and ALE meta-analyses and considered for post-hoc statistical analyses (C).
Figure 4
Figure 4
Distribution of group-related clusters that showed a spatial congruence in the HC and ALE procedures. The red dots represent the control-related clusters that fell in reading and phonological specific activations in Danelli et al. (2013), the blue dots represent the control-related clusters that were not observed in Danelli et al. (2013) and the green dots represent the control-related clusters fell in visual motion and motoric activations in Danelli et al. (2013). The right yellow dots represent the control-related cluster identified by the meta-analysis restricted to the non-reading-like tasks. Finally, dyslexic-related clusters are reported in cyan.
Figure 5
Figure 5
Clusters that showed a significant group-by-task and group-by-age interaction effect. For each clusters a histogram describe the peak distribution across group/conditions.
Figure 6
Figure 6
Overlap of raw data, group-related clusters and the MT/V5 region of interest extracted from activations reported by Eden et al. (1996) in normal controls.
Figure 7
Figure 7
Cerebellar clusters identified in both HC and ALE meta-analyses. In none of these there was a significant association with normal controls.

References

    1. American Psychiatric Association. (1994). Diagnostic and Statistical Manual of Mental Disorders. 4th Edn Washington, DC: American Psychiatric Association.
    1. Bach S., Brandeis D., Hofstetter C., Martin E., Richardson U., Brem S. (2010). Early emergence of deviant frontal fMRI activity for phonological processes in poor beginning readers. Neuroimage 53, 682–693. 10.1016/j.neuroimage.2010.06.039
    1. Backes W., Vuurman E., Wennekes R., Spronk P., Wuisman M., van Engelshoven J., et al. . (2002). Atypical brain activation of reading processes in children with developmental dyslexia. J. Child Neurol. 17, 867–871. 10.1177/08830738020170121601
    1. Beneventi H., Tonnessen F. E., Ersland L. (2009). Dyslexic children show short-term memory deficits in phonological storage and serial rehearsal: an fMRI study. Int. J. Neurosci. 119, 2017–2043. 10.1080/00207450903139671
    1. Beneventi H., Tonnessen F. E., Ersland L., Hugdahl K. (2010a). Executive working memory processes in dyslexia: behavioral and fMRI evidence. Scand. J. Psychol. 51, 192–202. 10.1111/j.1467-9450.2010.00808.x
    1. Beneventi H., Tonnessen F. E., Ersland L., Hugdahl K. (2010b). Working memory deficit in dyslexia: behavioral and FMRI evidence. Int. J. Neurosci. 120, 51–59. 10.3109/00207450903275129
    1. Booth J. R., Bebko G., Burman D. D., Bitan T. (2007). Children with reading disorder show modality independent brain abnormalities during semantic tasks. Neuropsychologia 45, 775–783. 10.1016/j.neuropsychologia.2006.08.015
    1. Brambati S. M., Termine C., Ruffino M., Danna M., Lanzi G., Stella G., et al. . (2006). Neuropsychological deficits and neural dysfunction in familial dyslexia. Brain Res. 1113, 174–185. 10.1016/j.brainres.2006.06.099
    1. Brunswick N., McCrory E., Price C. J., Frith C. D., Frith U. (1999). Explicit and implicit processing of words and pseudowords by adult developmental dyslexics: a search for Wernicke's Wortschatz? Brain 122(Pt 10), 1901–1917. 10.1093/brain/122.10.1901
    1. Cao F., Bitan T., Booth J. R. (2008). Effective brain connectivity in children with reading difficulties during phonological processing. Brain Lang. 107, 91–101. 10.1016/j.bandl.2007.12.009
    1. Cao F., Bitan T., Chou T. L., Burman D. D., Booth J. R. (2006). Deficient orthographic and phonological representations in children with dyslexia revealed by brain activation patterns. J. Child Psychol. Psychiatry 47, 1041–1050. 10.1111/j.1469-7610.2006.01684.x
    1. Cattinelli I., Gallucci M., Borghese N. A., Paulesu E. (2013a). Reading the reading brain: a new meta-analysis of functional imaging data on reading. J. Neurolinguistics 26, 214–238 10.1016/j.jneuroling.2012.08.001
    1. Cattinelli I., Valentini G., Paulesu E., Borghese A. N. (2013b). A novel approach to the problem of non-uniqueness of the solution in hierarchical clustering. IEEE Trans. Neural Netw. Learn. Syst. 24, 1166–1173 10.1109/TNNLS.2013.2247058
    1. Cohen L., Jobert A., Le Bihan D., Dehaene S. (2004). Distinct unimodal and multimodal regions for word processing in the left temporal cortex. Neuroimage 23, 1256–1270. 10.1016/j.neuroimage.2004.07.052
    1. Cohen L., Lehericy S., Chochon F., Lemer C., Rivaud S., Dehaene S. (2002). Language-specific tuning of visual cortex? Functional properties of the visual word form area. Brain 125(Pt 5), 1054–1069. 10.1093/brain/awf094
    1. Conway T., Heilman K. M., Gopinath K., Peck K., Bauer R., Briggs R. W., et al. . (2008). Neural substrates related to auditory working memory comparisons in dyslexia: an fMRI study. J. Int. Neuropsychol. Soc. 14, 629–639. 10.1017/S1355617708080867
    1. Corbetta M., Shulman G. L. (2011). Spatial neglect and attention networks. Annu. Rev. Neurosci. 34, 569–599. 10.1146/annurev-neuro-061010-113731
    1. Cornelissen P. L., Hansen P. C., Gilchrist I., Cormack F., Essex J., Frankish C. (1998). Coherent motion detection and letter position encoding. Vision Res. 38, 2181–2191. 10.1016/S0042-6989(98)00016-9
    1. Cornelissen P., Richardson A., Mason A., Fowler S., Stein J. (1995). Contrast sensitivity and coherent motion detection measured at photopic luminance levels in dyslexics and controls. Vision Res. 35, 1483–1494.
    1. Crepaldi D., Berlingeri M., Cattinelli I., Borghese N. A., Luzzatti C., Paulesu E. (2013). Clustering the lexicon in the brain: a meta-analysis of the neurofunctional evidence on noun and verb processing. Front. Hum. Neurosci. 7:303. 10.3389/fnhum.2013.00303
    1. Danelli L., Berlingeri M., Bottini G., Ferri F., Vacchi L., Sberna M., et al. . (2013). Neural intersections of the phonological, visual magnocellular and motor/cerebellar systems in normal readers: implications for imaging studies on dyslexia. Hum. Brain Mapp. 34, 2669–2687. 10.1002/hbm.22098
    1. Dehaene S., Pegado F., Braga L. W., Ventura P., Nunes Filho G., Jobert A., et al. . (2010). How learning to read changes the cortical networks for vision and language. Science 330, 1359–1364. 10.1126/science.1194140
    1. Demb J. B., Boynton G. M., Heeger D. J. (1998). Functional magnetic resonance imaging of early visual pathways in dyslexia. J. Neurosci. 18, 6939–6951.
    1. Demonet J. F., Taylor M. J., Chaix Y. (2004). Developmental dyslexia. Lancet 363, 1451–1460. 10.1016/S0140-6736(04)16106-0
    1. Desroches A. S., Cone N. E., Bolger D. J., Bitan T., Burman D. D., Booth J. R. (2010). Children with reading difficulties show differences in brain regions associated with orthographic processing during spoken language processing. Brain Res. 1356, 73–84. 10.1016/j.brainres.2010.07.097
    1. Dufor O., Serniclaes W., Sprenger-Charolles L., Demonet J. F. (2007). Top-down processes during auditory phoneme categorization in dyslexia: a PET study. Neuroimage 34, 1692–1707. 10.1016/j.neuroimage.2006.10.034
    1. Eckert M. A., Leonard C. M., Wilke M., Eckert M., Richards T., Richards A., et al. . (2005). Anatomical signatures of dyslexia in children: unique information from manual and voxel based morphometry brain measures. Cortex 41, 304–315. 10.1016/S0010-9452(08)70268-5
    1. Eden G. F., Jones K. M., Cappell K., Gareau L., Wood F. B., Zeffiro T. A., et al. . (2004). Neural changes following remediation in adult developmental dyslexia. Neuron 44, 411–422. 10.1016/j.neuron.2004.10.019
    1. Eden G. F., VanMeter J. W., Rumsey J. M., Maisog J. M., Woods R. P., Zeffiro T. A. (1996). Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature 382, 66–69. 10.1038/382066a0
    1. Eickhoff S. B., Laird A. R., Grefkes C., Wang L. E., Zilles K., Fox P. T. (2009). Coordinate based activation likelihood estimation meta-analysis of neuroimaging data: a random effects approach based on empirical estimates of spatial uncertainty. Hum. Brain Mapp. 30, 2907–2926. 10.1002/hbm.20718
    1. Facoetti A., Paganoni P., Turatto M., Marzola V., Mascetti G. G. (2000). Visual-spatial attention in developmental dyslexia. Cortex 36, 109–123. 10.1016/S0010-9452(08)70840-2
    1. Finn E. S., Shen X., Holahan J. M., Scheinost D., Lacadie C., Papademetris X., et al. . (2013). Disruption of functional networks in dyslexia: a whole-brain, data-driven analysis of connectivity. Biol. Psychiatry 76, 397–404. 10.1016/j.biopsych.2013.08.031
    1. Fisher R. A. (1970). Statistical Methods for Research Workers. Edinburgh: Oliver & Boyd.
    1. Fox P. T., Parsons L. M., Lancaster J. L. (1998). Beyond the single study: function/location metanalysis in cognitive neuroimaging. Curr. Opin. Neurobiol. 8, 178–187. 10.1016/S0959-4388(98)80138-4
    1. Frith U. (1999). Paradoxes in the definition of dyslexia. Dyslexia 5, 192–214.
    1. Gaab N., Gabrieli J. D., Deutsch G. K., Tallal P., Temple E. (2007). Neural correlates of rapid auditory processing are disrupted in children with developmental dyslexia and ameliorated with training: an fMRI study. Restor. Neurol. Neurosci. 25, 295–310.
    1. Galaburda A. M., Livingstone M. (1993). Evidence for a magnocellular defect in developmental dyslexia. Ann. N.Y. Acad. Sci. 682, 70–82. 10.1111/j.1749-6632.1993.tb22960.x
    1. Galaburda A. M., Sherman G. F., Rosen G. D., Aboitiz F., Geschwind N. (1985). Developmental dyslexia: four consecutive patients with cortical abnormalities. Ann. Neurol. 18, 222–233.
    1. Georgiewa P., Rzanny R., Hopf J. M., Knab R., Glauche V., Kaiser W. A., et al. . (1999). fMRI during word processing in dyslexic and normal reading children. Neuroreport 10, 3459–3465. 10.1097/00001756-199911080-00036
    1. Grande M., Meffert E., Huber W., Amunts K., Heim S. (2011). Word frequency effects in the left IFG in dyslexic and normally reading children during picture naming and reading. Neuroimage 57, 1212–1220. 10.1016/j.neuroimage.2011.05.033
    1. Grunling C., Ligges M., Huonker R., Klingert M., Mentzel H. J., Rzanny R., et al. . (2004). Dyslexia: the possible benefit of multimodal integration of fMRI- and EEG-data. J. Neural Transm. 111, 951–969. 10.1007/s00702-004-0117-z
    1. Hari R., Renvall H. (2001). Impaired processing of rapid stimulus sequences in dyslexia. Trends Cogn. Sci. 5, 525–532. 10.1016/S1364-6613(00)01801-5
    1. Heim S., Grande M., Pape-Neumann J., van Ermingen M., Meffert E., Grabowska A., et al. . (2010). Interaction of phonological awareness and ‘magnocellular’ processing during normal and dyslexic reading: behavioural and fMRI investigations. Dyslexia 16, 258–282. 10.1002/dys.409
    1. Heim S., Tschierse J., Amunts K., Wilms M., Vossel S., Willmes K., et al. . (2008). Cognitive subtypes of dyslexia. Acta Neurobiol. Exp. (Wars) 68, 73–89.
    1. Hoeft F., Hernandez A., McMillon G., Taylor-Hill H., Martindale J. L., Meyler A., et al. . (2006). Neural basis of dyslexia: a comparison between dyslexic and nondyslexic children equated for reading ability. J. Neurosci. 26, 10700–10708. 10.1523/JNEUROSCI.4931-05.2006
    1. Horwitz B., Rumsey J. M., Donohue B. C. (1998). Functional connectivity of the angular gyrus in normal reading and dyslexia. Proc. Natl. Acad. Sci. U.S.A. 95, 8939–8944. 10.1073/pnas.95.15.8939
    1. Hu W., Lee H. L., Zhang Q., Liu T., Geng L. B., Seghier M. L., et al. . (2010). Developmental dyslexia in Chinese and English populations: dissociating the effect of dyslexia from language differences. Brain 133(Pt 6), 1694–1706. 10.1093/brain/awq106
    1. Ingvar M., Trampe P., Greitz T., Eriksson L., Stone-Elander S., von Euler C. (2002). Residual differences in language processing in compensated dyslexics revealed in simple word reading tasks. Brain Lang. 83, 249–267. 10.1016/S0093-934X(02)00055-X
    1. Johannes S., Kussmaul C. L., Munte T. F., Mangun G. R. (1996). Developmental dyslexia: passive visual stimulation provides no evidence for a magnocellular processing defect. Neuropsychologia 34, 1123–1127. 10.1016/0028-3932(96)00026-7
    1. Kandel E., Schwartz J., Jessell T., Siegelbaum S., Hudspeth A. J. (2012). Principles of Neural Science. 5th Edn New York, NY: McGraw Hill Professional.
    1. Kast M., Bezzola L., Jancke L., Meyer M. (2011). Multi- and unisensory decoding of words and nonwords result in differential brain responses in dyslexic and nondyslexic adults. Brain Lang. 119, 136–148. 10.1016/j.bandl.2011.04.002
    1. Klingberg T., Hedehus M., Temple E., Salz T., Gabrieli J. D., Moseley M. E., et al. . (2000). Microstructure of temporo-parietal white matter as a basis for reading ability: evidence from diffusion tensor magnetic resonance imaging. Neuron 25, 493–500. 10.1016/S0896-6273(00)80911-3
    1. Kober H., Wager T. D. (2010). Meta-analysis of neuroimaging data. Wiley Interdiscip. Rev. Cogn. Sci. 1, 293–300. 10.1002/wcs.41
    1. Kovelman I., Norton E. S., Christodoulou J. A., Gaab N., Lieberman D. A., Triantafyllou C., et al. . (2011). Brain basis of phonological awareness for spoken language in children and its disruption in dyslexia. Cereb. Cortex 22, 754–764. 10.1093/cercor/bhr094
    1. Koyama M. S., Di Martino A., Kelly C., Jutagir D. R., Sunshine J., Schwartz S. J., et al. . (2013). Cortical signatures of dyslexia and remediation: an intrinsic functional connectivity approach. PLoS ONE 8:e55454. 10.1371/journal.pone.0055454
    1. Kronbichler M., Hutzler F., Staffen W., Mair A., Ladurner G., Wimmer H. (2006). Evidence for a dysfunction of left posterior reading areas in German dyslexic readers. Neuropsychologia 44, 1822–1832. 10.1016/j.neuropsychologia.2006.03.010
    1. Kronschnabel J., Schmid R., Maurer U., Brandeis D. (2013). Visual print tuning deficits in dyslexic adolescents under minimized phonological demands. Neuroimage 74, 58–69. 10.1016/j.neuroimage.2013.02.014
    1. Landi N., Mencl W. E., Frost S. J., Sandak R., Pugh K. R. (2010). An fMRI study of multimodal semantic and phonological processing in reading disabled adolescents. Ann. Dyslexia 60, 102–121. 10.1007/s11881-009-0029-6
    1. Levy J., Pernet C., Treserras S., Boulanouar K., Aubry F., Demonet J. F., et al. . (2009). Testing for the dual-route cascade reading model in the brain: an fMRI effective connectivity account of an efficient reading style. PLoS ONE 4:e6675. 10.1371/journal.pone.0006675
    1. Liddle E. B., Jackson G. M., Rorden C., Jackson S. R. (2009). Lateralized temporal order judgement in dyslexia. Neuropsychologia 47, 3244–3254. 10.1016/j.neuropsychologia.2009.08.007
    1. MacSweeney M., Brammer M. J., Waters D., Goswami U. (2009). Enhanced activation of the left inferior frontal gyrus in deaf and dyslexic adults during rhyming. Brain 132(Pt 7), 1928–1940. 10.1093/brain/awp129
    1. Maisog J. M., Einbinder E. R., Flowers D. L., Turkeltaub P. E., Eden G. F. (2008). A meta-analysis of functional neuroimaging studies of dyslexia. Ann. N.Y. Acad. Sci. 1145, 237–259. 10.1196/annals.1416.024
    1. Maurer U., Schulz E., Brem S., der Mark S., Bucher K., Martin E., et al. . (2011). The development of print tuning in children with dyslexia: evidence from longitudinal ERP data supported by fMRI. Neuroimage 57, 714–722. 10.1016/j.neuroimage.2010.10.055
    1. Mazziotta J. C., Toga A. W., Evans A., Fox P., Lancaster J. (1995). A probabilistic atlas of the human brain: theory and rationale for its development. The International Consortium for Brain Mapping (ICBM). Neuroimage 2, 89–101. 10.1006/nimg.1995.1012
    1. McCrory E. J., Frith U., Brunswick N., Price C. (2000). Abnormal functional activation during a simple word repetition task: a PET study of adult dyslexics. J. Cogn. Neurosci. 12, 753–762. 10.1162/089892900562570
    1. McCrory E. J., Mechelli A., Frith U., Price C. J. (2005). More than words: a common neural basis for reading and naming deficits in developmental dyslexia? Brain 128(Pt 2), 261–267. 10.193/brain/awh340
    1. Menghini D., Finzi A., Benassi M., Bolzani R., Facoetti A., Giovagnoli S., et al. . (2010). Different underlying neurocognitive deficits in developmental dyslexia: a comparative study. Neuropsychologia 48, 863–872. 10.1016/j.neuropsychologia.2009.11.003
    1. Menghini D., Hagberg G. E., Caltagirone C., Petrosini L., Vicari S. (2006). Implicit learning deficits in dyslexic adults: an fMRI study. Neuroimage 33, 1218–1226. 10.1016/j.neuroimage.2006.08.024
    1. Meyler A., Keller T. A., Cherkassky V. L., Gabrieli J. D., Just M. A. (2008). Modifying the brain activation of poor readers during sentence comprehension with extended remedial instruction: a longitudinal study of neuroplasticity. Neuropsychologia 46, 2580–2592. 10.1016/j.neuropsychologia.2008.03.012
    1. Monzalvo K., Fluss J., Billard C., Dehaene S., Dehaene-Lambertz G. (2012). Cortical networks for vision and language in dyslexic and normal children of variable socio-economic status. Neuroimage 61, 258–274. 10.1016/j.neuroimage.2012.02.035
    1. Morgan B. J. T., Ray A. P. G. (1995). Non-uniqueness and inversions in cluster analysis. Appl. Stat. 44, 117–134 10.2307/2986199
    1. Nicolson R. I., Fawcett A. J., Berry E. L., Jenkins I. H., Dean P., Brooks D. J. (1999). Association of abnormal cerebellar activation with motor learning difficulties in dyslexic adults. Lancet 353, 1662–1667. 10.1016/S0140-6736(98)09165-X
    1. Nicolson R. I., Fawcett A. J., Dean P. (2001). Developmental dyslexia: the cerebellar deficit hypothesis. Trends Neurosci. 24, 508–511. 10.1016/S0166-2236(00)01896-8
    1. Olulade O. A., Gilger J. W., Talavage T. M., Hynd G. W., McAteer C. I. (2012). Beyond phonological processing deficits in adult dyslexics: atypical FMRI activation patterns for spatial problem solving. Dev. Neuropsychol. 37, 617–635. 10.1080/87565641.2012.702826
    1. Olulade O. A., Napoliello E. M., Eden G. F. (2013). Abnormal visual motion processing is not a cause of dyslexia. Neuron 79, 180–190. 10.1016/j.neuron.2013.05.002
    1. Paulesu E., Connelly A., Frith C. D., Friston K. J., Heather J., Myers R., et al. . (1995). Functional MR imaging correlations with positron emission tomography. Initial experience using a cognitive activation paradigm on verbal working memory. Neuroimaging Clin. N. Am. 5, 207–225.
    1. Paulesu E., Demonet J. F., Fazio F., McCrory E., Chanoine V., Brunswick N., et al. . (2001). Dyslexia: cultural diversity and biological unity. Science 291, 2165–2167. 10.1126/science.1057179
    1. Paulesu E., Frith C. D., Frackowiak R. S. (1993). The neural correlates of the verbal component of working memory. Nature 362, 342–345. 10.1038/362342a0
    1. Paulesu E., Frith U., Snowling M., Gallagher A., Morton J., Frackowiak R. S., et al. . (1996). Is developmental dyslexia a disconnection syndrome? Evidence from PET scanning. Brain 119(Pt 1), 143–157. 10.1093/brain/119.1.143
    1. Paulesu E., McCrory E., Fazio F., Menoncello L., Brunswick N., Cappa S. F., et al. . (2000). A cultural effect on brain function. Nat. Neurosci. 3, 91–96. 10.1038/71163
    1. Pecini C., Biagi L., Brizzolara D., Cipriani P., Di Lieto M. C., Guzzetta A., et al. . (2011). How many functional brains in developmental dyslexia? When the history of language delay makes the difference. Cogn. Behav. Neurol. 24, 85–92. 10.1097/WNN.0b013e318222a4c2
    1. Pekkola J., Laasonen M., Ojanen V., Autti T., Jaaskelainen I. P., Kujala T., et al. . (2006). Perception of matching and conflicting audiovisual speech in dyslexic and fluent readers: an fMRI study at 3 T. Neuroimage 29, 797–807. 10.1016/j.neuroimage.2005.09.069
    1. Pennington B. F., Van Orden G. C., Smith S. D., Green P. A., Haith M. M. (1990). Phonological processing skills and deficits in adult dyslexics. Child Dev. 61, 1753–1778. 10.2307/1130836
    1. Pernet C., Andersson J., Paulesu E., Demonet J. F. (2009). When all hypotheses are right: a multifocal account of dyslexia. Hum. Brain Mapp. 30, 2278–2292. 10.1002/hbm.20670
    1. Pernet C., Schyns P. G., Demonet J. F. (2007). Specific, selective or preferential: comments on category specificity in neuroimaging. Neuroimage 35, 991–997. 10.1016/j.neuroimage.2007.01.017
    1. Peyrin C., Demonet J. F., N'Guyen-Morel M. A., Le Bas J. F., Valdois S. (2011). Superior parietal lobule dysfunction in a homogeneous group of dyslexic children with a visual attention span disorder. Brain Lang. 118, 128–138. 10.1016/j.bandl.2010.06.005
    1. Price C. J., Gorno-Tempini M. L., Graham K. S., Biggio N., Mechelli A., Patterson K., et al. . (2003). Normal and pathological reading: converging data from lesion and imaging studies. Neuroimage 20(Suppl. 1), S30–S41. 10.1016/j.neuroimage.2003.09.012
    1. Pugh K. R., Mencl W. E., Jenner A. R., Katz L., Frost S. J., Lee J. R., et al. . (2000). Functional neuroimaging studies of reading and reading disability (developmental dyslexia). Ment. Retard. Dev. Disabil. Res. Rev. 6, 207–213. 10.1002/1098-2779(2000)6:3<207::AID-MRDD8>;2-P
    1. Radua J., Mataix-Cols D. (2012). Meta-analytic methods for neuroimaging data explained. Biol. Mood Anxiety Disord. 2:6. 10.1186/2045-5380-2-6
    1. Ramus F., Rosen S., Dakin S. C., Day B. L., Castellote J. M., White S., et al. . (2003). Theories of developmental dyslexia: insights from a multiple case study of dyslexic adults. Brain 126(Pt 4), 841–865. 10.1093/brain/awg076
    1. Reid A. A., Szczerbinski M., Iskierka-Kasperek E., Hansen P. (2007). Cognitive profiles of adult developmental dyslexics: theoretical implications. Dyslexia 13, 1–24. 10.1002/dys.321
    1. Reilhac C., Peyrin C., Demonet J. F., Valdois S. (2013). Role of the superior parietal lobules in letter-identity processing within strings: fMRI evidence from skilled and dyslexic readers. Neuropsychologia 51, 601–612. 10.1016/j.neuropsychologia.2012.12.010
    1. Richards T. L., Berninger V. W. (2008). Abnormal fMRI connectivity in children with dyslexia during a phoneme task: before but not after treatment. J. Neurolinguistics 21, 294–304. 10.1016/j.jneuroling.2007.07.002
    1. Richlan F., Kronbichler M., Wimmer H. (2009). Functional abnormalities in the dyslexic brain: a quantitative meta-analysis of neuroimaging studies. Hum. Brain Mapp. 30, 3299–3308. 10.1002/hbm.20752
    1. Richlan F., Kronbichler M., Wimmer H. (2011). Meta-analyzing brain dysfunctions in dyslexic children and adults. Neuroimage 56, 1735–1742. 10.1016/j.neuroimage.2011.02.040
    1. Richlan F., Kronbichler M., Wimmer H. (2013). Structural abnormalities in the dyslexic brain: a meta-analysis of voxel-based morphometry studies. Hum. Brain Mapp. 34, 3055–3065. 10.1002/hbm.22127
    1. Richlan F., Sturm D., Schurz M., Kronbichler M., Ladurner G., Wimmer H. (2010). A common left occipito-temporal dysfunction in developmental dyslexia and acquired letter-by-letter reading? PLoS ONE 5:e12073. 10.1371/journal.pone.0012073
    1. Rimrodt S. L., Clements-Stephens A. M., Pugh K. R., Courtney S. M., Gaur P., Pekar J. J., et al. . (2009). Functional MRI of sentence comprehension in children with dyslexia: beyond word recognition. Cereb. Cortex 19, 402–413. 10.1093/cercor/bhn092
    1. Rorden C., Brett M. (2000). Stereotaxic display of brain lesions. Behav. Neurol. 12, 191–200. 10.1155/2000/421719
    1. Ruff S., Cardebat D., Marie N., Demonet J. F. (2002). Enhanced response of the left frontal cortex to slowed down speech in dyslexia: an fMRI study. Neuroreport 13, 1285–1289. 10.1097/00001756-200207190-00014
    1. Rumsey J. M., Andreason P., Zametkin A. J., Aquino T., King A. C., Hamburger S. D., et al. . (1992). Failure to activate the left temporoparietal cortex in dyslexia. An oxygen 15 positron emission tomographic study. Arch. Neurol. 49, 527–534. 10.1001/archneur.1992.00530290115020
    1. Rumsey J. M., Donohue B. C., Brady D. R., Nace K., Giedd J. N., Andreason P. (1997a). A magnetic resonance imaging study of planum temporale asymmetry in men with developmental dyslexia. Arch. Neurol. 54, 1481–1489. 10.1001/archneur.1997.00550240035010
    1. Rumsey J. M., Nace K., Donohue B., Wise D., Maisog J. M., Andreason P. (1997b). A positron emission tomographic study of impaired word recognition and phonological processing in dyslexic men. Arch. Neurol. 54, 562–573. 10.1001/archneur.1997.00550170042013
    1. Salimi-Khorshidi G., Smith S. M., Keltner J. R., Wager T. D., Nichols T. E. (2009). Meta-analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling of studies. Neuroimage 45, 810–823. 10.1016/j.neuroimage.2008.12.039
    1. Sandak R., Mencl W. E., Frost S. J., Rueckl J. G., Katz L., Moore D. L., et al. . (2004). The neurobiology of adaptive learning in reading: a contrast of different training conditions. Cogn. Affect. Behav. Neurosci. 4, 67–88. 10.3758/CABN.4.1.67
    1. Schulz E., Maurer U., van der Mark S., Bucher K., Brem S., Martin E., et al. . (2008). Impaired semantic processing during sentence reading in children with dyslexia: combined fMRI and ERP evidence. Neuroimage 41, 153–168. 10.1016/j.neuroimage.2008.02.012
    1. Schulz E., Maurer U., van der Mark S., Bucher K., Brem S., Martin E., et al. . (2009). Reading for meaning in dyslexic and young children: distinct neural pathways but common endpoints. Neuropsychologia 47, 2544–2557. 10.1016/j.neuropsychologia.2009.04.028
    1. Schurz M., Wimmer H., Richlan F., Ludersdorfer P., Klackl J., Kronbichler M. (2014). Resting-State and task-based functional brain connectivity in developmental dyslexia. Cereb. Cortex. [Epub ahead of print]. 10.1093/cercor/bhu184
    1. Shaywitz B. A., Shaywitz S. E., Pugh K. R., Mencl W. E., Fulbright R. K., Skudlarski P., et al. (2002). Disruption of posterior brain systems for reading in children with developmental dyslexia. Biol. Psychiatry 52, 101–110 10.1016/S0006-3223(02)01365-3
    1. Shaywitz S. E., Escobar M. D., Shaywitz B. A., Fletcher J. M., Makuch R. (1992). Evidence that dyslexia may represent the lower tail of a normal distribution of reading ability. N. Engl. J. Med. 326, 145–150. 10.1056/NEJM199201163260301
    1. Shaywitz S. E., Shaywitz B. A., Pugh K. R., Fulbright R. K., Constable R. T., Mencl W. E., et al. . (1998). Functional disruption in the organization of the brain for reading in dyslexia. Proc. Natl. Acad. Sci. U.S.A. 95, 2636–2641. 10.1073/pnas.95.5.2636
    1. Silani G., Frith U., Demonet J. F., Fazio F., Perani D., Price C., et al. . (2005). Brain abnormalities underlying altered activation in dyslexia: a voxel based morphometry study. Brain 128(Pt 10), 2453–2461. 10.1093/brain/awh579
    1. Smith E. E., Jonides J., Marshuetz C., Koeppe R. A. (1998). Components of verbal working memory: evidence from neuroimaging. Proc. Natl. Acad. Sci. U.S.A. 95, 876–882. 10.1073/pnas.95.3.876
    1. Snowling M. J. (2001). From language to reading and dyslexia. Dyslexia 7, 37–46. 10.1002/dys.185
    1. Stein J. (2001). The magnocellular theory of developmental dyslexia. Dyslexia 7, 12–36. 10.1002/dys.186
    1. Stein J., Walsh V. (1997). To see but not to read; the magnocellular theory of dyslexia. Trends Neurosci. 20, 147–152. 10.1016/S0166-2236(96)01005-3
    1. Steinbrink C., Groth K., Lachmann T., Riecker A. (2012). Neural correlates of temporal auditory processing in developmental dyslexia during German vowel length discrimination: an fMRI study. Brain Lang. 121, 1–11. 10.1016/j.bandl.2011.12.003
    1. Talairach J., Tournoux P. (1988). Co-planar Stereotaxic Atlas of the Human Brain: 3-D Proportional System: An Approach to Cerebral Imaging. New York, NY: Thieme Medical Publishers.
    1. Taylor J. S., Rastle K., Davis M. H. (2013). Can cognitive models explain brain activation during word and pseudoword reading? A meta-analysis of 36 neuroimaging studies. Psychol. Bull. 139, 766–791. 10.1037/a0030266
    1. Temple E., Poldrack R. A., Protopapas A., Nagarajan S., Salz T., Tallal P., et al. . (2000). Disruption of the neural response to rapid acoustic stimuli in dyslexia: evidence from functional MRI. Proc. Natl. Acad. Sci. U.S.A. 97, 13907–13912. 10.1073/pnas.240461697
    1. Temple E., Poldrack R. A., Salidis J., Deutsch G. K., Tallal P., Merzenich M. M., et al. . (2001). Disrupted neural responses to phonological and orthographic processing in dyslexic children: an fMRI study. Neuroreport 12, 299–307. 10.1097/00001756-200102120-00024
    1. Turkeltaub P. E., Eden G. F., Jones K. M., Zeffiro T. A. (2002). Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage 16(3 Pt 1), 765–780. 10.1006/nimg.2002.1131
    1. Turkeltaub P. E., Eickhoff S. B., Laird A. R., Fox M., Wiener M., Fox P. (2012). Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Hum. Brain Mapp. 33, 1–13. 10.1002/hbm.21186
    1. Turkeltaub P. E., Gareau L., Flowers D. L., Zeffiro T. A., Eden G. F. (2003). Development of neural mechanisms for reading. Nat. Neurosci. 6, 767–773. 10.1038/nn1065
    1. Vallar G., Bottini G., Paulesu E. (2003). Neglect syndromes: the role of the parietal cortex, in The Parietal Lobe (Advances in Neurology), eds Siegel A. M., Andersen R. A., Freund H. J., Spencer D. D. (Philadelphia, PA: Lippincott Williams & Wilkins; ), 293–319.
    1. van der Mark S., Bucher K., Maurer U., Schulz E., Brem S., Buckelmuller J., et al. . (2009). Children with dyslexia lack multiple specializations along the visual word-form (VWF) system. Neuroimage 47, 1940–1949. 10.1016/j.neuroimage.2009.05.021
    1. van der Mark S., Klaver P., Bucher K., Maurer U., Schulz E., Brem S., et al. . (2011). The left occipitotemporal system in reading: disruption of focal fMRI connectivity to left inferior frontal and inferior parietal language areas in children with dyslexia. Neuroimage 54, 2426–2436. 10.1016/j.neuroimage.2010.10.002
    1. Vanni S., Uusitalo M. A., Kiesila P., Hari R. (1997). Visual motion activates V5 in dyslexics. Neuroreport 8, 1939–1942. 10.1097/00001756-199705260-00029
    1. Vasic N., Lohr C., Steinbrink C., Martin C., Wolf R. C. (2008). Neural correlates of working memory performance in adolescents and young adults with dyslexia. Neuropsychologia 46, 640–648. 10.1016/j.neuropsychologia.2007.09.002
    1. Wager T. D., Lindquist M., Kaplan L. (2007). Meta-analysis of functional neuroimaging data: current and future directions. Soc. Cogn. Affect. Neurosci. 2, 150–158. 10.1093/scan/nsm015
    1. Ward J. H. J. (1963). Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 10.1080/01621459.1963.10500845
    1. Wimmer H., Schurz M., Sturm D., Richlan F., Klackl J., Kronbichler M., et al. . (2010). A dual-route perspective on poor reading in a regular orthography: an fMRI study. Cortex 46, 1284–1298. 10.1016/j.cortex.2010.06.004
    1. Wolf R. C., Sambataro F., Lohr C., Steinbrink C., Martin C., Vasic N. (2010). Functional brain network abnormalities during verbal working memory performance in adolescents and young adults with dyslexia. Neuropsychologia 48, 309–318. 10.1016/j.neuropsychologia.2009.09.020
    1. World Healt Organization. (1993). The International Classification of Deseases. Geneve: World Healt Organization.
    1. Zorzi M., Barbiero C., Facoetti A., Lonciari I., Carrozzi M., Montico M., et al. . (2012). Extra-large letter spacing improves reading in dyslexia. Proc. Natl. Acad. Sci. U.S.A. 109, 11455–11459. 10.1073/pnas.1205566109

Source: PubMed

3
Abonnere