The role of 5-aminolevulinic acid in spinal tumor surgery: a review

John V Wainwright, Toshiki Endo, Jared B Cooper, Teiji Tominaga, Meic H Schmidt, John V Wainwright, Toshiki Endo, Jared B Cooper, Teiji Tominaga, Meic H Schmidt

Abstract

Purpose: Primary intradural spinal neoplasms account for a small proportion of central nervous system tumors. The primary treatment for these tumors consists of maximal safe resection and preservation of neurologic function. Gross total resection, which is associated with the lowest rate of tumor recurrence and longer progression-free survival for most histologies, can be difficult to achieve. Currently, the use of 5-aminolevulinc acid (5-ALA) which takes advantage of Protoporphyrin IX (PpIX) fluorescence, is a well-established technique for improving resection of malignant cerebral gliomas. This technique is being increasingly applied to other cerebral neoplasms, and multiple studies have attempted to evaluate the utility of 5-ALA-aided resection of spinal neoplasms.

Methods: The authors reviewed the existing literature on the use of 5-ALA and PpIX fluorescence as an aid to resection of primary and secondary spinal neoplasms by searching the PUBMED and EMBASE database for records up to March 2018. Data was abstracted from all studies describing spinal neurosurgical uses in the English language.

Results: In the reviewed studies, the most useful fluorescence was observed in meningiomas, ependymomas, drop metastases from cerebral gliomas, and hemangiopericytomas of the spine, which is consistent with applications in cerebral neoplasms.

Conclusions: The available literature is significantly limited by a lack of standardized methods for measurement and quantification of 5-ALA fluorescence. The results of the reviewed studies should guide future development of rational trial protocols for the use of 5-ALA guided resection in spinal neoplasms.

Keywords: 5-Aminolevulinc acid; Fluorescence guided resection; Protoporphyrin IX; Spinal neoplasm.

Figures

Fig. 1
Fig. 1
Flowchart showing literature search method
Fig. 2
Fig. 2
Magnetic resonance imaging (MRI) of the case described by Inoue et al. Preoperative T1-weighted (a) and T2 weighted (b) sagittal MRI revealed a homogeneously enhanced intramedullary T3-5 tumor with cyst formation extending to T8. Postoperative T1-weighted sagittal MRI (c) confirmed complete tumor resection with no signs of recurrence 2 years after surgery. Reprinted from Inoue et al. [13] 5-aminolevulinic acid fluorescence-guided resection of intramedullary ependymoma: Report of 9 cases. Neurosurgery 72:159–168. Reprinted with permission Oxford University Press
Fig. 3
Fig. 3
Intraoperative images of ependymoma resection described by Inoue et al. Note that the images obtained using white light (left column) are coupled with images using 5-aminolevulinic acid (5-ALA) fluorescence (right). (a and b) After dissection of the posterior medial sulcus, the tumor, which had a vivid reddish fluorescence (asterisk), was encountered. c Dissection of the lateral wall of the tumor from the spinal cord. The tumor was encapsulated and easily distinguished from the surrounding spinal cord parenchyma under the microscope. d A slight fluorescence was noted on the surface of the tumor (asterisk). e and f At the ventrocaudal edge of the tumor, gray tissue was left untouched on the basis of negative 5-ALA fluorescence (asterisk). g Characteristic perivascular pseudorosettes (arrows) and ependymal rosettes (arrowheads) were observed in the tissue with 5-ALA-positive fluorescence. Hematoxylin and eosin stain. Scale bars = 200 µm. Reprinted from Inoue et al. [13] 5-aminolevulinic acid fluorescence-guided resection of intramedullary ependymoma: Report of 9 cases. Neurosurgery 72:159–168. Reprinted with permission from Oxford University Press

References

    1. Duong LM, McCarthy BJ, McLendon RE, Dolecek TA, Kruchko C, Douglas LL, Ajani UA. Descriptive epidemiology of malignant and nonmalignant primary spinal cord, spinal meninges, and cauda equina tumors, United States, 2004–2007. Cancer. 2012;118:4220–4227. doi: 10.1002/cncr.27390.
    1. Engelhard HH, Villano JL, Porter KR, Stewart AK, Barua M, Barker FG, Newton HB. Clinical presentation, histology, and treatment in 430 patients with primary tumors of the spinal cord, spinal meninges, or cauda equina. J Neurosurg Spine. 2010;13:67–77. doi: 10.3171/2010.3.SPINE09430.
    1. Millesi M, Kiesel B, Woehrer A, Hainfellner JA, Novak K, Martínez-Moreno M, Wolfsberger S, Knosp E, Widhalm G. Analysis of 5-aminolevulinic acid–induced fluorescence in 55 different spinal tumors. Neurosurg Focus. 2014;36:E11. doi: 10.3171/2013.12.FOCUS13485.
    1. Raco A, Esposito V, Lenzi J, Piccirilli M, Delfini R, Cantore G. Long-term follow-up of intramedullary spinal cord tumors: a series of 202 cases. Neurosurgery. 2005;56:972–981.
    1. Ottenhausen M, Krieg SM, Meyer B, Ringel F. Functional preoperative and intraoperative mapping and monitoring: increasing safety and efficacy in glioma surgery. Neurosurg Focus. 2015;38:E3. doi: 10.3171/2014.10.FOCUS14611.
    1. Bansal S, Ailawadhi P, Suri A, et al. Ten years’ experience in the management of spinal intramedullary tumors in a single institution. J Clin Neurosci. 2013;20:292–298. doi: 10.1016/j.jocn.2012.01.056.
    1. Yoon SH, Chung CK, Jahng TA. Surgical outcome of spinal canal meningiomas. J Korean Neurosurg Soc. 2007;42:300–304. doi: 10.3340/jkns.2007.42.4.300.
    1. Sandalcioglu IE, Hunold A, Müller O, Bassiouni H, Stolke D, Asgari S. Spinal meningiomas: critical review of 131 surgically treated patients. Eur Spine J. 2008;17:1035–1041. doi: 10.1007/s00586-008-0685-y.
    1. Benes V, Barsa P, Benes V, Suchomel P. Prognostic factors in intramedullary astrocytomas: a literature review. Eur Spine J. 2009;18:1397–1422. doi: 10.1007/s00586-009-1076-8.
    1. Ravindra VM, Schmidt MH. Management of spinal meningiomas. Neurosurg Clin N Am. 2016;27:195–205. doi: 10.1016/j.nec.2015.11.010.
    1. Juthani RG, Bilsky MH, Vogelbaum MA. Current management and treatment modalities for intramedullary spinal cord tumors. Curr Treat Options Oncol. 2015;16:39. doi: 10.1007/s11864-015-0358-0.
    1. Tobin MK, Geraghty JR, Engelhard HH, Linninger AA, Mehta AI. Intramedullary spinal cord tumors: a review of current and future treatment strategies. Neurosurg Focus. 2015;39:E14–E24. doi: 10.3171/2015.5.FOCUS15158.
    1. Inoue T, Endo T, Nagamatsu K, Watanabe M, Tominaga T. 5-aminolevulinic acid fluorescence-guided resection of intramedullary ependymoma: report of 9 cases. Neurosurgery. 2013;72:ons159–168. doi: 10.1227/NEU.0b013e318276ee69.
    1. Wostrack M, Ringel F, Eicker SO, et al. Spinal ependymoma in adults: a multicenter investigation of surgical outcome and progression-free survival. J Neurosurg Spine. 2018;28:654–662. doi: 10.3171/2017.9.SPINE17494.
    1. Garcés-Ambrossi GL, McGirt MJ, Mehta VA, Sciubba DM, Witham TF, Bydon A, Wolinksy J-P, Jallo GI, Gokaslan ZL. Factors associated with progression-free survival and long-term neurological outcome after resection of intramedullary spinal cord tumors: analysis of 101 consecutive cases. J Neurosurg Spine. 2009;11:591–599. doi: 10.3171/2009.4.SPINE08159.
    1. Hefti M, von Campe G, Moschopulos M, Siegner A, Looser H, Landolt H. 5-Aminolevulinic acid induced protoporphyrin IX fluorescence in high-grade glioma surgery: a one-year experience at a single institutuion. Swiss Med Wkly. 2008;138:180–185.
    1. Hadjipanayis CG, Widhalm G, Stummer W. What is the surgical benefit of utilizing 5-aminolevulinic acid for fluorescence-guided surgery of malignant gliomas? Neurosurgery. 2015;77:663–673. doi: 10.1227/NEU.0000000000000929.
    1. Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ. Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg. 2000;93:1003–1013. doi: 10.3171/jns.2000.93.6.1003.
    1. Stummer W, Kamp MA. The importance of surgical resection in malignant glioma. Curr Opin Neurol. 2009;22:645–649. doi: 10.1097/WCO.0b013e3283320165.
    1. Stummer W, Stocker S, Wagner S, Stepp H, Fritsch C, Goetz C, Goetz AE, Kiefmann R, Reulen HJ. Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery. 1998;42:518–525. doi: 10.1097/00006123-199803000-00017.
    1. Pichlmeier U, Bink A, Schackert G, Stummer W. Resection and survival in glioblastoma multiforme: an RTOG recursive partitioning analysis of ALA study patients. Neuro Oncol. 2008;10:1025–1034. doi: 10.1215/15228517-2008-052.
    1. Rapp M, Klingenhöfer M, Felsberg J, Steiger HJ, Stummer W, Sabel M. Fluorescence-guided resection of spinal metastases of malignant glioma: report of 2 cases. J Neurol Surg A Cent Eur Neurosurg. 2012;73:103–105. doi: 10.1055/s-0032-1309068.
    1. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7:392–401. doi: 10.1016/S1470-2045(06)70665-9.
    1. Motekallemi A, Jeltema HR, Metzemaekers JDM, van Dam GM, Crane LMA, Groen RJM. The current status of 5-ALA fluorescence-guided resection of intracranial meningiomas—a critical review. Neurosurg Rev. 2015;38:619–628. doi: 10.1007/s10143-015-0615-5.
    1. Preuß M, Renner C, Krupp W, et al. The use of 5-aminolevulinic acid fluorescence guidance in resection of pediatric brain tumors. Childs Nerv Syst. 2013;29:1263–1267. doi: 10.1007/s00381-013-2159-8.
    1. Kamp MA, Grosser P, Felsberg J, Slotty PJ, Steiger HJ, Reifenberger G, Sabel M. 5-Aminolevulinic acid (5-ALA)-induced fluorescence in intracerebral metastases: a retrospective study. Acta Neurochir. 2012;154:223–228. doi: 10.1007/s00701-011-1200-5.
    1. Kamp MA, Fischer I, Bühner J, Turowski B, Cornelius JF, Steiger H-J, Rapp M, Slotty PJ, Sabel M. 5-ALA fluorescence of cerebral metastases and its impact for the local-in-brain progression. Oncotarget. 2016;7:66776–66789. doi: 10.18632/oncotarget.11488.
    1. Stummer W, Rodrigues F, Schucht P, et al. Predicting the “usefulness” of 5-ALA-derived tumor fluorescence for fluorescence-guided resections in pediatric brain tumors: a European survey. Acta Neurochir. 2014;156:2315–2324. doi: 10.1007/s00701-014-2234-2.
    1. Millesi M, Kiesel B, Mischkulnig M, Martínez-Moreno M, Wöhrer A, Wolfsberger S, Knosp E, Widhalm G. Analysis of the surgical benefits of 5-ALA–induced fluorescence in intracranial meningiomas: experience in 204 meningiomas. J Neurosurg. 2016;125:1408–1419. doi: 10.3171/2015.12.JNS151513.
    1. Muroi C, Fandino J, Coluccia D, Berkmann S, Fathi A-R, Landolt H. 5-Aminolevulinic acid fluorescence-guided surgery for spinal meningioma. World Neurosurg. 2013;80:223.e1–223.e3. doi: 10.1016/j.wneu.2012.12.017.
    1. Shimizu S, Utsuki S, Sato K, Oka H, Fujii K, Mii K. Photodynamic diagnosis in surgery for spinal ependymoma. Case illustration. J Neurosurg Spine. 2006;5:380. doi: 10.3171/spi.2006.5.4.380.
    1. Ewelt C, Stummer W, Klink B, Felsberg J, Steiger HJ, Sabel M. Cordectomy as final treatment option for diffuse intramedullary malignant glioma using 5-ALA fluorescence-guided resection. Clin Neurol Neurosurg. 2010;112:357–361. doi: 10.1016/j.clineuro.2009.12.013.
    1. Eicker SO, Floeth FW, Kamp M, Steiger HJ, Hänggi D. The impact of fluorescence guidance on spinal intradural tumour surgery. Eur Spine J. 2013;22:1394–1401. doi: 10.1007/s00586-013-2657-0.
    1. Krause Molle Z, Gierga K, Turowski B, Steiger HJ, Cornelius JF, Rapp M, Sabel M, Kamp MA. 5-ALA—induced fluorescence in leptomeningeal dissemination of spinal malignant glioma. World Neurosurg. 2018;110:345–348. doi: 10.1016/j.wneu.2017.10.069.
    1. Hefti M, Holenstein F, Albert I, Looser H, Luginbuehl V. Susceptibility to 5-aminolevulinic acid based photodynamic therapy in WHO i meningioma cells corresponds to ferrochelatase activity. Photochem Photobiol. 2011;87:235–241. doi: 10.1111/j.1751-1097.2010.00821.x.
    1. Kiesel B, Mischkulnig M, Woehrer A et al (2017) Systematic histopathological analysis of different 5-aminolevulinic acid-induced fluorescence levels in newly diagnosed glioblastomas. J Neurosurg 1–13
    1. Widhalm G, Wolfsberger S, Minchev G, Woehrer A, Krssak M, Czech T, Prayer D, Asenbaum S, Hainfellner JA, Knosp E. 5-Aminolevulinic acid is a promising marker for detection of anaplastic foci in diffusely infiltrating gliomas with nonsignificant contrast enhancement. Cancer. 2010;116:1545–1552. doi: 10.1002/cncr.24903.
    1. Ottenhausen M, Ntoulias G, Bodhinayake I, Ruppert F-H, Schreiber S, Förschler A, Boockvar JA, Jödicke A. Intradural spinal tumors in adults-update on management and outcome. Neurosurg Rev. 2018
    1. Karikari IO, Nimjee SM, Hodges TR, et al. Impact of tumor histology on resectability and neurological outcome in primary intramedullary spinal cord tumors: a single-center experience with 102 patients. Neurosurgery. 2011;68:188–197. doi: 10.1227/NEU.0b013e3181fe3794.
    1. Boström A, Kanther N-C, Grote A, Boström J. Management and outcome in adult intramedullary spinal cord tumours: a 20-year single institution experience. BMC Res Notes. 2014;7:908. doi: 10.1186/1756-0500-7-908.
    1. Klekamp J. Spinal ependymomas. Part 1: intramedullary ependymomas. Neurosurg Focus. 2015;39:E6. doi: 10.3171/2015.5.FOCUS15161.
    1. Klekamp J. Spinal ependymomas. Part 2: ependymomas of the filum terminale. Neurosurg Focus. 2015;39:E7. doi: 10.3171/2015.5.FOCUS15151.
    1. Lee S-H, Chung CK, Kim CH, Yoon SH, Hyun S-J, Kim K-J, Kim E-S, Eoh W, Kim H-J. Long-term outcomes of surgical resection with or without adjuvant radiation therapy for treatment of spinal ependymoma: a retrospective multicenter study by the Korea Spinal Oncology Research Group. Neuro Oncol. 2013;15:921–929. doi: 10.1093/neuonc/not038.
    1. Li YM, Suki D, Hess K, Sawaya R. The influence of maximum safe resection of glioblastoma on survival in 1229 patients: can we do better than gross-total resection? J Neurosurg. 2016;124:977–988. doi: 10.3171/2015.5.JNS142087.
    1. Hübner F, Braun V, Richter HP. Case reports of symptomatic metastases in four patients with primary intracranial gliomas. Acta Neurochir. 2001;143:25–29. doi: 10.1007/s007010170134.
    1. Ferraro N, Barbarite E, Albert TR, Berchmans E, Shah AH, Bregy A, Ivan ME, Brown T, Komotar RJ. The role of 5-aminolevulinic acid in brain tumor surgery: a systematic review. Neurosurg Rev. 2016;39:545–555. doi: 10.1007/s10143-015-0695-2.
    1. Valdés PA, Jacobs V, Harris BT, Wilson BC, Leblond F, Paulsen KD, Roberts DW. Quantitative fluorescence using 5-aminolevulinic acid-induced protoporphyrin IX biomarker as a surgical adjunct in low-grade glioma surgery. J Neurosurg. 2015;123:771–780. doi: 10.3171/2014.12.JNS14391.
    1. Li Y, Rey-Dios R, Roberts DW, Valdés PA, Cohen-Gadol AA. Intraoperative fluorescence-guided resection of high-grade gliomas: a comparison of the present techniques and evolution of future strategies. World Neurosurg. 2014;82:175–185. doi: 10.1016/j.wneu.2013.06.014.
    1. Belykh E, Martirosyan NL, Yagmurlu K, Miller EJ, Eschbacher JM, Izadyyazdanabadi M, Bardonova LA, Byvaltsev VA, Nakaji P, Preul MC. Intraoperative fluorescence imaging for personalized brain tumor resection: current state and future directions. Front Surg. 2016;3:55. doi: 10.3389/fsurg.2016.00055.

Source: PubMed

3
Abonnere