Noninvasive Combined Diagnosis and Monitoring of Aspergillus and Pseudomonas Infections: Proof of Concept

Radim Dobiáš, Anton Škríba, Tomáš Pluháček, Miloš Petřík, Andrea Palyzová, Marcela Káňová, Eva Čubová, Jiří Houšť, Jiří Novák, David A Stevens, Goran Mitulovič, Eva Krejčí, Petr Hubáček, Vladimír Havlíček, Radim Dobiáš, Anton Škríba, Tomáš Pluháček, Miloš Petřík, Andrea Palyzová, Marcela Káňová, Eva Čubová, Jiří Houšť, Jiří Novák, David A Stevens, Goran Mitulovič, Eva Krejčí, Petr Hubáček, Vladimír Havlíček

Abstract

In acutely ill patients, particularly in intensive care units or in mixed infections, time to a microbe-specific diagnosis is critical to a successful outcome of therapy. We report the application of evolving technologies involving mass spectrometry to diagnose and monitor a patient's course. As proof of this concept, we studied five patients and used two rat models of mono-infection and coinfection. We report the noninvasive combined monitoring of Aspergillus fumigatus and Pseudomonas aeruginosa infection. The invasive coinfection was detected by monitoring the fungal triacetylfusarinine C and ferricrocin siderophore levels and the bacterial metabolites pyoverdin E, pyochelin, and 2-heptyl-4-quinolone, studied in the urine, endotracheal aspirate, or breath condensate. The coinfection was monitored by mass spectrometry followed by isotopic data filtering. In the rat infection model, detection indicated 100-fold more siderophores in urine compared to sera, indicating the diagnostic potential of urine sampling. The tools utilized in our studies can now be examined in large clinical series, where we could expect the accuracy and speed of diagnosis to be competitive with conventional methods and provide advantages in unraveling the complexities of mixed infections.

Keywords: Aspergillus fumigatus; Pseudomonas aeruginosa; coinfection; invasive infection; noninvasive diagnosis; quorum-sensing molecules; siderophores; virulence factor.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
ARF patients’ chest radiography and CT scans. (A,B) Radiographs showing increasing bilateral, inhomogeneous blurring, likely caused by inflammatory infiltrations (Patient 1). (C,D) Atelectasis in both lower lung lobes and irregular multiple ground glass opacities revealed by the CT scan of Patient 2. Right-sided pneumothorax and small amount of fluid in bilateral pleural cavities are also discernable.
Figure 2
Figure 2
Noninvasive detection of Aspergillus and Pseudomonas biomarkers returned by CycloBranch. (A) Chemical structures of the siderophores (1–6) and HHQ (9). Compound numbering is described in the associated table. (B) Patient 1’s urine profile compiled from reconstructed ion chromatograms recorded in the low- and high-mass experiments (see Materials and Methods for details). TafC was detected as a singly charged species (m/z 906.3304, see the right inset for Peak 6, indicating the presence of 54Fe and 56Fe stable isotopes). The left inset (Peak 1) indicates the isotopic profile of FoxE. (C) Patient 1’s breath condensate profile sampled on the same Day 12 of illness with a mixture of doubly charged pyoverdines. Peak 5 in the left inset is represented by an isotopic pattern, indicating two charges (54Fe/56Fe isotopes are separated by approximately one Dalton). The right inset belongs to pyochelin singly protonated molecule. M in the table stands for neutral molecule; Ret. time, retention time. Fluconazole and its glucuronide structures are reported in Supplementary Materials Figure S8.
Figure 3
Figure 3
MALDI-FTICR-MS annotation of Patient 1’s breath condensate (sampled Day 12). Pch (A), PvdE (B), and HHQ (C) were all detected by MALDI MS as protonated forms. The structures of these molecules are shown. The annotation in red was returned by CycloBranch software [9] when running the MALDI mass spectrum against the library of P. aeruginosa secondary metabolites. The red color was added to an examined spectrum by the software automatically. The color indicates which isotope features have been used by the computing algorithm for the annotation process.

References

    1. Janbon G., Quintin J., Lanternier F., d’Enfert C. Studying fungal pathogens of humans and fungal infections: Fungal diversity and diversity of approaches. Genes Immun. 2019;20:403–414. doi: 10.1038/s41435-019-0071-2.
    1. Köhler J.R., Casadevall A., Perfect J. The spectrum of fungi that infects humans. Cold Spring Harb. Perspect. Med. 2014;5:a019273. doi: 10.1101/cshperspect.a019273.
    1. Salmanton-García J., Sprute R., Stemler J., Bartoletti M., Dupont D., Valerio M., Garcia-Vidal C., Falces-Romero I., Machado M., de la Villa S., et al. COVID-19–associated pulmonary aspergillosis, March–August 2020. Emerg. Infect. Dis. 2021;27:1077. doi: 10.3201/eid2704.204895.
    1. Verweij P.E., Rijnders B.J.A., Bruggemann R.J.M., Azoulay E., Bassetti M., Blot S., Calandra T., Clancy C.J., Cornely O.A., Chiller T., et al. Review of influenza-associated pulmonary aspergillosis in ICU patients and proposal for a case definition: An expert opinion. Intensive Care Med. 2020;46:1524–1535. doi: 10.1007/s00134-020-06091-6.
    1. Shortridge D., Gales A.C., Streit J.M., Huband M.D., Tsakris A., Jones R.N. Geographic and Temporal Patterns of Antimicrobial Resistance in Pseudomonas aeruginosa Over 20 Years From the SENTRY Antimicrobial Surveillance Program, 1997–2016. Open Forum Infect. Dis. 2019;6:S63–S68. doi: 10.1093/ofid/ofy343.
    1. Curran C.S., Bolig T., Torabi-Parizi P. Mechanisms and targeted therapies for Pseudomonas aeruginosa lung infection. Am. J. Respir. Crit. Care Med. 2018;197:708–727. doi: 10.1164/rccm.201705-1043SO.
    1. Cassini A., Högberg L.D., Plachouras D., Quattrocchi A., Hoxha A., Simonsen G.S., Colomb-Cotinat M., Kretzschmar M.E., Devleesschauwer B., Cecchini M., et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019;19:56–66. doi: 10.1016/S1473-3099(18)30605-4.
    1. Sass G., Nazik H., Penner J., Shah H., Ansari S.R., Clemons K.V., Groleau M.-C., Dietl A.-M., Visca P., Haas H., et al. Aspergillus-Pseudomonas interaction, relevant to competition in airways. Med. Mycol. 2019;57:S228–S232. doi: 10.1093/mmy/myy087.
    1. Novák J., Škríba A., Havlíček V. Cyclobranch 2: Molecular formula annotations applied to imzML data sets in bimodal fusion and LC-MS data files. Anal. Chem. 2020;92:6844–6849. doi: 10.1021/acs.analchem.0c00170.
    1. Škríba A., Pluháček T., Palyzová A., Nový Z., Lemr K., Hajdúch M., Petřík M., Havlíček V. Early and non-invasive diagnosis of aspergillosis revealed by infection kinetics monitored in a rat model. Front. Microbiol. 2018;9:2356. doi: 10.3389/fmicb.2018.02356.
    1. Petrik M., Umlaufova E., Raclavsky V., Palyzova A., Havlicek V., Pfister J., Mair C., Novy Z., Popper M., Hajduch M., et al. 68Ga-labelled desferrioxamine-B for bacterial infection imaging. Eur. J. Nucl. Med. Mol. Imaging. 2021;48:372–382. doi: 10.1007/s00259-020-04948-y.
    1. Raymond K.N., Dertz E.A., Kim S.S. Enterobactin: An archetype for microbial iron transport. Proc. Natl. Acad. Sci. USA. 2003;100:3584–3588. doi: 10.1073/pnas.0630018100.
    1. Nazik H., Sass G., Ansari S.R., Ertekin R., Haas H., Deziel E., Stevens D.A. Novel intermicrobial molecular interaction: Pseudomonas aeruginosa Quinolone Signal (PQS) modulates Aspergillus fumigatus response to iron. Microbiology. 2020;166:44–55. doi: 10.1099/mic.0.000858.
    1. Petřík M., Umlaufová E., Raclavský V., Palyzová A., Havlíček V., Haas H., Nový Z., Doležal D., Hajduch M., Decristoforo C. Imaging of Pseudomonas aeruginosa infection with Ga-68 labelled pyoverdine for positron emission tomography. Sci. Rep. 2018;8:15698. doi: 10.1038/s41598-018-33895-w.
    1. Matthaiou E.I., Sass G., Stevens D.A., Hsu J.L. Iron: An essential nutrient for Aspergillus fumigatus and a fulcrum for pathogenesis. Curr. Opin. Infect. Dis. 2018;31:506–511. doi: 10.1097/QCO.0000000000000487.
    1. Sass G., Nazik H., Chatterjee P., Stevens D.A. Under nonlimiting iron conditions pyocyanin is a major antifungal molecule, and differences between prototypic Pseudomonas aeruginosa strains. Med. Mycol. 2021;59:453–464. doi: 10.1093/mmy/myaa066.
    1. Moura-Alves P., Puyskens A., Stinn A., Klemm M., Guhlich-Bornhof U., Dorhoi A., Furkert J., Kreuchwig A., Protze J., Lozza L., et al. Host monitoring of quorum sensing during Pseudomonas aeruginosa infection. Science. 2019;366:eaaw1629. doi: 10.1126/science.aaw1629.
    1. Allegretta G., Maurer C.K., Eberhard J., Maura D., Hartmann R.W., Rahme L., Empting M. In-depth profiling of mvfr-regulated small molecules in Pseudomonas aeruginosa after quorum sensing inhibitor treatment. Front. Microbiol. 2017;8:924. doi: 10.3389/fmicb.2017.00924.
    1. Bassetti M., Azoulay E., Kullberg B.J., Ruhnke M., Shoham S., Vazquez J., Giacobbe D.R., Calandra T. EORTC/MSGERC definitions of invasive fungal diseases: Summary of activities of the intensive care unit working group. Clin. Infect. Dis. 2021;72:121–127. doi: 10.1093/cid/ciaa1751.
    1. An J., McDowell A., Kim Y.-K., Kim T.-B. Extracellular vesicle-derived microbiome obtained from exhaled breath condensate in patients with asthma. Ann. Allergy Asthma Immunol. 2021;126:729–731. doi: 10.1016/j.anai.2021.02.030.
    1. Škríba A., Patil R.H., Hubáček P., Dobiáš R., Palyzová A., Marešová H., Pluháček T., Havlíček V. Rhizoferrin glycosylation in Rhizopus microsporus. J. Fungi. 2020;6:89. doi: 10.3390/jof6020089.
    1. Luptáková D., Pluháček T., Petřík M., Novák J., Palyzová A., Sokolová L., Škríba A., Šedivá B., Lemr K., Havlíček V. Non-invasive and invasive diagnoses of aspergillosis in a rat model by mass spectrometry. Sci. Rep. 2017;7:16523. doi: 10.1038/s41598-017-16648-z.
    1. Singer M., Deutschman C.S., Seymour C.W., Shankar-Hari M., Annane D., Bauer M., Bellomo R., Bernard G.R., Chiche J.-D., Coopersmith C.M., et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287.

Source: PubMed

3
Abonnere