Lung and diaphragm ultrasound as predictors of success in weaning from mechanical ventilation

Eva Tenza-Lozano, Ana Llamas-Alvarez, Enrique Jaimez-Navarro, Javier Fernández-Sánchez, Eva Tenza-Lozano, Ana Llamas-Alvarez, Enrique Jaimez-Navarro, Javier Fernández-Sánchez

Abstract

Background: Lung and diaphragm ultrasound methods have recently been introduced to predict the outcome of weaning from mechanical ventilation (MV). The aim of this study is to assess the reliability and accuracy of these techniques for predicting successful weaning in critically ill adults.

Methods: We conducted two studies: a cross-sectional interobserver agreement study between two sonographers and a prospective cohort study to assess the accuracy of lung and diaphragm ultrasound for predicting weaning and extubation outcome. For the interobserver agreement study, we included 50 general critical care patients who were consecutively admitted to the ICU. For the predictive accuracy study, we included consecutively 69 patients on MV who were ready for weaning. We assessed interobserver agreement of ultrasound measurements, using the weighted kappa coefficient for LUSm score (modified lung ultrasound score) and the intraclass correlation coefficient (ICC) and Bland-Altman method for TI (diaphragm thickening index). We assessed the predictive value of LUSm and TI in weaning outcome by plotting the corresponding ROC curves.

Results: We found adequate interobserver agreement for both LUSm (weighted kappa 0.95) and TI (ICC 0.78, difference according to Bland-Altman analysis ± 12.5%). LUSm showed good-moderate discriminative power for successful weaning and extubation (area under the ROC curve (AUC) for successful weaning 0.80, and sensitivity and specificity at optimal cut-off point 0.76 and 0.73, respectively; AUC for successful extubation 0.78, and optimal sensitivity and specificity 0.76 and 0.47, respectively. TI was more sensitive but less specific for predicting successful weaning (AUC 0.71, optimal sensitivity and specificity 0.93 and 0.48) and successful extubation (AUC 0.76, optimal sensitivity and specificity 0.93 and 0.58). The area under the ROC curve for predicting weaning success was 0.83 for both ultrasound measurements together.

Conclusions: Interobserver agreement was excellent for LUSm and moderate-good for TI. A low TI value or high LUSm value indicates high risk of weaning failure.

Keywords: Diaphragm ultrasound; Lung ultrasound; Weaning; Withdrawal of mechanical ventilation.

Figures

Fig. 1
Fig. 1
Bland–Altman method for interobserver difference in TI measurement
Fig. 2
Fig. 2
Flowchart of patients
Fig. 3
Fig. 3
ROC curves for predictive value of TI in successful weaning (SW) (+), in successful extubation (SE) (White square) and LUSm in SW (White circle) and SE (Increment). In SW: LUSm AUC 0.8; TI AUC 0.71. In SE: LUSm AUC 0.78; TI AUC 0.76
Fig. 4
Fig. 4
ROC curve for predictive value of TI plus LUSm in successful weaning (SW). AUC 0.83

References

    1. Peñuelas O, Frutos-Vivar F, Fernández C, Anzueto A, Epstein SK, Apezteguía C, et al. Characteristics and outcomes of ventilated patients according to time to liberation from mechanical ventilation. Am J Respir Crit Care Med. 2011;184(4):430–437. doi: 10.1164/rccm.201011-1887OC.
    1. Powers SK, Kavazis ANLS. Prolonged mechanical ventilation alters diaphragmatic structure and function. Crit Care Med. 2009;37(10 suppl):S347–S353. doi: 10.1097/CCM.0b013e3181b6e760.
    1. Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, Zhu J, Sachdeva R, Sonnad S, Kaiser LR, Rubinstein NA, Powers SKSJ. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358(13):1327–1335. doi: 10.1056/NEJMoa070447.
    1. Béduneau G, Pham T, Schortgen F, Piquilloud L, Zogheib E, Jonas M, Grelon F, Runge I, Terzi N, Grangé S, Barberet G, Guitard PG, Frat JP, Constan A, Chretien JM, Mancebo J, Mer BL. Epidemiology of weaning outcome according to a new definition. The WIND study. Am J Respir Crit Care Med. 2016;195(6):772–783. doi: 10.1164/rccm.201602-0320OC.
    1. Funk GC, Anders S, Breyer MK, Burghuber OC, Edelmann G, Heindl W, et al. Incidence and outcome of weaning from mechanical ventilation according to new categories. Eur Respir J. 2010;35(1):88–94. doi: 10.1183/09031936.00056909.
    1. Savi A, Teixeira C, Silva JM, Borges LG, Pereira PA, Pinto KB, et al. Weaning predictors do not predict extubation failure in simple-to-wean patients. J Crit Care. 2012;27(2):221-e1–221-e8. doi: 10.1016/j.jcrc.2011.07.079.
    1. Bouhemad B, Liu ZH, Arbelot C, Zhang M, Ferarri F, Le-Guen M, Girard M, Lu QRJ. Ultrasound assessment of antibiotic-induced pulmonary reaeration in ventilator-associated pneumonia. Crit Care Med. 2010;38(1):84–92. doi: 10.1097/CCM.0b013e3181b08cdb.
    1. Soummer A, Perbet S, Brisson H, Arbelot C, Constantin J-M, Lu Q, et al. Ultrasound assessment of lung aeration loss during a successful weaning trial predicts postextubation distress. Crit Care Med. 2012;40(7):2064–2072. doi: 10.1097/CCM.0b013e31824e68ae.
    1. Binet C, Neron L, Rochart N, Cousson J, Floch T, Charbit B, et al. Validation d’un indice échographique prédictif d’échec de sevrage de la ventilation mécanique. Ann Fr Anesth Reanim. 2014;33:A383. doi: 10.1016/j.annfar.2014.07.653.
    1. Shoaeir M, Noeam KMA. Lung aeration loss as a predictor of reintubation using lung ultrasound in mechanically ventilated patients. Biolife. 2016;4(3):514–520.
    1. Osman AM, Hashim RM. Diaphragmatic and lung ultrasound application as new predictive indices for the weaning process in ICU patients. Egypt J Radiol Nucl Med. 2017;48:61–66. doi: 10.1016/j.ejrnm.2017.01.005.
    1. DiNino E, Gartman EJEJ, Sethi JMJM, McCool FDD. Diaphragm ultrasound as a predictor of successful extubation from mechanical ventilation. Thorax. 2014;69(5):423–427. doi: 10.1136/thoraxjnl-2013-204111.
    1. Ferrari G, De Filippi G, Elia F, Panero F, Volpicelli GAF. Diaphragm ultrasound as a new index of discontinuation from mechanical ventilation. Crit Ultrasound J. 2014;6(1):8. doi: 10.1186/2036-7902-6-8.
    1. Blumhof S, Wheeler D, Thomas K, McCool FD, Mora J. Change in diaphragmatic thickness during the respiratory cycle predicts extubation success at various levels of pressure support ventilation. Lung. 2016;194(4):519–525. doi: 10.1007/s00408-016-9911-2.
    1. Fayed AM, Abd El Hady MA, Shaaban MSFD. Use of ultrasound to assess diaphragmatic thickness as a weaning parameter in invasively ventilated chronic obstructive pulmonary disease patients. J Am Sci. 2016;12(6):96–105.
    1. Farghaly S, Hasan AA. Diaphragm ultrasound as a new method to predict extubation outcome in mechanically ventilated patients. Aust Crit Care. 2015
    1. Jung B, Moury PH, Mahul M, de Jong A, Galia F, Prades A, et al. Diaphragmatic dysfunction in patients with ICU-acquired weakness and its impact on extubation failure. Intensive Care Med. 2016;42(5):853–861. doi: 10.1007/s00134-015-4125-2.
    1. Baess AI, Abdallah TH, Emara DM, Hassan M. Diaphragmatic ultrasound as a predictor of successful extubation from mechanical ventilation: thickness, displacement, or both? Egypt J Bronchiol. 2016;10(2):162–166. doi: 10.4103/1687-8426.184370.
    1. Umbrello M, Formenti P. Ultrasonographic assessment of diaphragm function in critically ill subjects. Respir Care. 2016;61(4):542–555. doi: 10.4187/respcare.04412.
    1. Ali ER, Mohamad AM. Diaphragm ultrasound as a new functional and morphological index of outcome, prognosis and discontinuation from mechanical ventilation in critically ill patients and evaluating the possible protective indices against VIDD. Egypt J Chest Dis Tuberc. 2016
    1. Zambon M, Greco M, Bocchino S, Cabrini L, Beccaria PF, Zangrillo A. Assessment of diaphragmatic dysfunction in the critically ill patient with ultrasound: a systematic review. Intensive Care Med. 2016;43(1):29–38. doi: 10.1007/s00134-016-4524-z.
    1. Palkar A, Narasimhan M, Greenberg H, Singh K, Koenig S, Mayo P, et al. Diaphragm excursion-time index: a new parameter using ultrasonography to predict extubation outcome. Chest. 2018;153(5):1213–1220. doi: 10.1016/j.chest.2018.01.007.
    1. Dubé B-P, Dres M, Mayaux J, Demiri S, Similowski T, Demoule A. Ultrasound evaluation of diaphragm function in mechanically ventilated patients: comparison to phrenic stimulation and prognostic implications. Thorax. 2017
    1. Llamas-Alvarez AM, Tenza-Lozano EM, Latour-Perez J. Diaphragm and lung ultrasound to predict weaning outcome: systematic review and meta-analysis. Chest. 2017;152(6):1140–1150. doi: 10.1016/j.chest.2017.08.028.
    1. Bouhemad B, Zhang M, Lu QRJ. Clinical review: bedside lung ultrasound in critical care practice. Crit Care. 2007;11(1):205. doi: 10.1186/cc5668.
    1. Lichtenstein DAMG. Relevance of lung ultrasound in the diagnosis of acute respiratory failure: the BLUE protocol. Chest. 2008;134(1):117–125. doi: 10.1378/chest.07-2800.
    1. Matamis D, Soilemezi E, Tsagourias M, Akoumianaki E, Dimassi S, Boroli F, et al. Sonographic evaluation of the diaphragm in critically ill patients. Technique and clinical applications. Intensive Care Med. 2013;39(5):801–810. doi: 10.1007/s00134-013-2823-1.
    1. Boles J-M, Bion J, Connors A, Herridge M, Marsh B, Melot C, et al. Weaning from mechanical ventilation. Eur Respir J. 2007;29(5):1033–1056. doi: 10.1183/09031936.00010206.
    1. Esteban A, Anzueto A, Frutos F, Alía I, Brochard L, Stewart TE, Benito S, Epstein SK, Apezteguía C, Nightingale P, Arroliga AC, Tobin MJ. Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA. 2002;287(3):345. doi: 10.1001/jama.287.3.345.
    1. Esteban A, Frutos-Vivar F, Muriel A, Ferguson ND, Peñuelas O, Abraira V, et al. Evolution of mortality over time in patients receiving mechanical ventilation. Am J Respir Crit Care Med. 2013;188(2):220–230. doi: 10.1164/rccm.201212-2169OC.
    1. Figueroa-Casas JB, Broukhim A, Vargas A, Milam L, Montoya R. Inter-observer agreement of spontaneous breathing trial outcome. Respir Care. 2014;59(9):1324–1328. doi: 10.4187/respcare.03022.
    1. Esteban A, Alía I, Tobin MTA, et al. Effect of spontaneous breathing trial duration on outcome of attempts to discontinue mechanical ventilation. Am J Resp Crit Care Med. 1999;159:512–518. doi: 10.1164/ajrccm.159.2.9803106.
    1. Frutos-Vivar F, Esteban A, Apezteguia C, González M, Arabi Y, Restrepo MI, et al. Outcome of reintubated patients after scheduled extubation. J Crit Care. 2011;26(5):502–509. doi: 10.1016/j.jcrc.2010.12.015.
    1. Tonnelier A, Tonnelier JM, Nowak E, Gut-Gobert C, Prat G, Renault A, et al. Clinical relevance of classification according to weaning difficulty. Respir Care. 2011;56(5):583–590. doi: 10.4187/respcare.00842.
    1. Sellares J, Ferrer M, Cano E, Loureiro H, Valencia M, Torres A. Predictors of prolonged weaning and survival during ventilator weaning in a respiratory ICU. Intensive Care Med. 2011;37(5):775–784. doi: 10.1007/s00134-011-2179-3.
    1. Thille AW, Boissier F, Ben-Ghezala H, Razazi K, Mekontso-Dessap A, Brun-Buisson C, et al. Easily identified at-risk patients for extubation failure may benefit from noninvasive ventilation: a prospective before-after study. Crit Care. 2016;20(1):48. doi: 10.1186/s13054-016-1228-2.
    1. Ferrer M, Esquìnas A, Arancibia F, Thomas Bauer T, Gonzalez G, Carrillo A, et al. Noninvasive ventilation during persistent weaning failure: a randomized controlled trial. Am J Respir Crit Care Med. 2003;168(1):70–76. doi: 10.1164/rccm.200209-1074OC.
    1. Nava S, Gregoretti C, Fanfulla F, Squadrone E, Grassi M, Carlucci A, Beltrame FNP. Noninvasive ventilation to prevent respiratory failure after extubation in high-risk patients. Crit Care Med. 2005;33(11):2465–2470. doi: 10.1097/01.CCM.0000186416.44752.72.
    1. Esteban A, Alía I, Gordo FFR, et al. Extubation outcome after spontaneous breathing trials with T-tube or pressure support ventilation. Am J Respir Crit Care Med. 1997;156:459–465. doi: 10.1164/ajrccm.156.2.9610109.
    1. Thille AW, Harrois A, Schortgen F, Brun-Buisson C, Brochard L. Outcomes of extubation failure in medical intensive care unit patients. Crit Care Med. 2011;39(12):2612–2618. doi: 10.1097/CCM.0b013e3182282a5a.

Source: PubMed

3
Abonnere