Gene expression-based drug repurposing to target aging

Handan Melike Dönertaş, Matías Fuentealba Valenzuela, Linda Partridge, Janet M Thornton, Handan Melike Dönertaş, Matías Fuentealba Valenzuela, Linda Partridge, Janet M Thornton

Abstract

Aging is the largest risk factor for a variety of noncommunicable diseases. Model organism studies have shown that genetic and chemical perturbations can extend both lifespan and healthspan. Aging is a complex process, with parallel and interacting mechanisms contributing to its aetiology, posing a challenge for the discovery of new pharmacological candidates to ameliorate its effects. In this study, instead of a target-centric approach, we adopt a systems level drug repurposing methodology to discover drugs that could combat aging in human brain. Using multiple gene expression data sets from brain tissue, taken from patients of different ages, we first identified the expression changes that characterize aging. Then, we compared these changes in gene expression with drug-perturbed expression profiles in the Connectivity Map. We thus identified 24 drugs with significantly associated changes. Some of these drugs may function as antiaging drugs by reversing the detrimental changes that occur during aging, others by mimicking the cellular defence mechanisms. The drugs that we identified included significant number of already identified prolongevity drugs, indicating that the method can discover de novo drugs that meliorate aging. The approach has the advantages that using data from human brain aging data, it focuses on processes relevant in human aging and that it is unbiased, making it possible to discover new targets for aging studies.

Keywords: aging; drug repurposing; gene expression; the Connectivity Map.

© 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

Figures

Figure 1
Figure 1
(a) Age distribution of the brains from which the data sets used in the study were derived. The error bars show the standard deviation of the sample frequency for different brain regions in data sources with multiple brain regions. (b) Hypothetical gene expression plots, demonstrating how Spearman's correlation coefficient and p‐value behave when the association is weak or nonmonotonic. (c) Pairwise Spearman's rank correlation coefficients across data sets. The intensity of the colours on the heatmap shows the magnitude of the correlation coefficient
Figure 2
Figure 2
Method summary for (a) compiling the aging signature and (b) the CMap algorithm
Figure 3
Figure 3
Gene Ontology Biological Process Categories significantly enriched in (a) down‐ and (b) upregulated genes in the microarray aging signature. Red circles represent the genes, and diamonds show the significantly associated GO categories, where FDR adjusted p < 0.05. The size of the diamonds represents the effect size (odds ratio)
Figure 4
Figure 4
Similarity score table for the drugs having at least one significant association with the aging signatures. Each row corresponds to a drug and columns correspond to two independent aging signatures—using the microarray and the GTEx data sets. The size of score labels indicates the significance of the results (FDR‐corrected p < 0.05). The row labels written in bold indicates the drugs in the DrugAge database
Figure 5
Figure 5
Schematic representation of the drug–target associations as a network. Blue and red nodes show drugs and targets, respectively. The drugs with a light blue background are present in DrugAge database and the targets with a pink background are in either GenAge model organism or GenAge human databases

References

    1. Aliper, A. , Belikov, A. V. , Garazha, A. , Jellen, L. , Artemov, A. , Suntsova, M. , … Zhavoronkov, A. (2016). In search for geroprotectors: In silico screening and in vitro validation of signalome‐level mimetics of young healthy state. Aging, 8(9), 2127–2152.
    1. Ardlie, K. G. , Deluca, D. S. , Segre, A. V. , Sullivan, T. J. , Young, T. R. , Gelfand, E. T. , … Dermitzakis, E. T. (2015). The genotype‐tissue expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science, 348(6235), 648–660. 10.1126/science.1262110
    1. Ashburner, M. , Ball, C. A. , Blake, J. A. , Botstein, D. , Butler, H. , Cherry, J. M. , … Sherlock, G. (2000). Gene ontology: Tool for the unification of biology. The gene ontology consortium. Nature Genetics, 25(1), 25–29. 10.1038/75556
    1. Avramopoulos, D. , Szymanski, M. , Wang, R. , & Bassett, S. (2011). Gene expression reveals overlap between normal aging and Alzheimer's disease genes. Neurobiology of Aging, 32(12), 2319.e27–2319.e34. 10.1016/j.neurobiolaging.2010.04.019
    1. Barardo, D. , Thornton, D. , Thoppil, H. , Walsh, M. , Sharifi, S. , Ferreira, S. , … de Magalhães, J. P. (2017). The DrugAge database of aging‐related drugs. Aging Cell, 16(3), 594–597. 10.1111/acel.12585
    1. Barnes, M. R. , Huxley‐Jones, J. , Maycox, P. R. , Lennon, M. , Thornber, A. , Kelly, F. , … De Belleroche, J. (2011). Transcription and pathway analysis of the superior temporal cortex and anterior prefrontal cortex in schizophrenia. Journal of Neuroscience Research, 89(8), 1218–1227. 10.1002/jnr.22647
    1. Barrett, T. , Wilhite, S. E. , Ledoux, P. , Evangelista, C. , Kim, I. F. , Tomashevsky, M. , … Soboleva, A. (2013). NCBI GEO: Archive for functional genomics data sets – Update. Nucleic Acids Research, 41(D1), D991–D995. 10.1093/nar/gks1193
    1. Bento, A. P. , Gaulton, A. , Hersey, A. , Bellis, L. J. , Chambers, J. , Davies, M. , … Overington, J. P. (2014). The ChEMBL bioactivity database: An update. Nucleic Acids Research, 42(D1), D1083–D1090. 10.1093/nar/gkt1031
    1. Berchtold, N. C. , Cribbs, D. H. , Coleman, P. D. , Rogers, J. , Head, E. , Kim, R. , … Cotman, C. W. (2008). Gene expression changes in the course of normal brain aging are sexually dimorphic. Proceedings of the National Academy of Sciences of the United States of America, 105(40), 15605–15610. 10.1073/pnas.0806883105
    1. Bjedov, I. , Toivonen, J. M. , Kerr, F. , Slack, C. , Jacobson, J. , Foley, A. , & Partridge, L. (2010). Mechanisms of life span extension by Rapamycin in the fruit fly Drosophila melanogaster . Cell Metabolism, 11(1), 35–46. 10.1016/j.cmet.2009.11.010
    1. Calvert, S. , Tacutu, R. , Sharifi, S. , Teixeira, R. , Ghosh, P. , & de Magalhães, J. P. (2016). A network pharmacology approach reveals new candidate caloric restriction mimetics in C. elegans . Aging Cell, 15(2), 256–266. 10.1111/acel.12432
    1. Carvalho, B. S. , & Irizarry, R. A. (2010). A framework for oligonucleotide microarray preprocessing. Bioinformatics, 26(19), 2363–2367. 10.1093/bioinformatics/btq431
    1. Clancy, D. J. , Gems, D. , Harshman, L. G. , Oldham, S. , Stocker, H. , Hafen, E. , … Partridge, L. (2001). Extension of life‐span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science, 292(5514), 104–106. 10.1126/science.1057991
    1. Colantuoni, C. , Lipska, B. K. , Ye, T. , Hyde, T. M. , Tao, R. , Leek, J. T. , … Kleinman, J. E. (2011). Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature, 478(7370), 519–523. 10.1038/nature10524
    1. Dönertaş, H. M. , Izgi, H. , Kamaclo'lu, A. , He, Z. , Khaitovich, P. , & Somel, M. (2017). Gene expression reversal toward pre‐adult levels in the aging human brain and age‐related loss of cellular identity. Scientific Reports, 7(1), 5894 10.1038/s41598-017-05927-4
    1. Duran‐Frigola, M. , Mateo, L. , & Aloy, P. (2017). Drug repositioning beyond the low‐hanging fruits. Current Opinion in Systems Biology, 3, 95–102. 10.1016/j.coisb.2017.04.010
    1. Durinck, S. , Spellman, P. T. , Birney, E. , & Huber, W. (2009). Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nature Protocols, 4(8), 1184–1191. 10.1038/nprot.2009.97
    1. Fontana, L. , & Partridge, L. (2015). Promoting health and longevity through diet: From model organisms to humans. Cell, 161(1), 106–118. 10.1016/j.cell.2015.02.020
    1. Fontana, L. , Partridge, L. , & Longo, V. D. (2010). Extending healthy life span–from yeast to humans. Science, 328(5976), 321–326. 10.1126/science.1172539
    1. Gautier, L. , Cope, L. , Bolstad, B. M. , & Irizarry, R. A. (2004). affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics, 20(3), 307–315. 10.1093/bioinformatics/btg405
    1. Kang, H. J. , Kawasawa, Y. I. , Cheng, F. , Zhu, Y. , Xu, X. , Li, M. , … Sestan, N. (2011). Spatio‐temporal transcriptome of the human brain. Nature, 478(7370), 483–489. 10.1038/nature10523
    1. Kim, S. , Thiessen, P. A. , Bolton, E. E. , Chen, J. , Fu, G. , Gindulyte, A. , … Bryant, S. H. (2016). PubChem substance and compound databases. Nucleic Acids Research, 44(D1), D1202–D1213. 10.1093/nar/gkv951
    1. Kuhn, M. , Letunic, I. , Jensen, L. J. , & Bork, P. (2016). The SIDER database of drugs and side effects. Nucleic Acids Research, 44(D1), D1075–D1079. 10.1093/nar/gkv1075
    1. Lamb, J. (2006). The connectivity map: Using gene‐expression signatures to connect small molecules, genes, and disease. Science, 313(5795), 1929–1935. 10.1126/science.1132939
    1. Law, V. , Knox, C. , Djoumbou, Y. , Jewison, T. , Guo, A. C. , Liu, Y. , … Wishart, D. S. (2014). DrugBank 4.0: Shedding new light on drug metabolism. Nucleic Acids Research, 42(D1), D1091–D1097. 10.1093/nar/gkt1068
    1. Lu, T. , Pan, Y. , Kao, S.‐Y. , Li, C. , Kohane, I. , Chan, J. , & Yankner, B. A. (2004). Gene regulation and DNA damage in the ageing human brain. Nature, 429(6994), 883–891. 10.1038/nature02661
    1. Lucanic, M. , Lithgow, G. J. , & Alavez, S. (2013). Pharmacological lifespan extension of invertebrates. Ageing Research Reviews, 12(1), 445–458. 10.1016/j.arr.2012.06.006
    1. Mair, W. , & Dillin, A. (2008). Aging and survival: The genetics of life span extension by dietary restriction. Annual Review of Biochemistry, 77(1), 727–754. 10.1146/annurev.biochem.77.061206.171059
    1. Mannick, J. B. , Del Giudice, G. , Lattanzi, M. , Valiante, N. M. , Praestgaard, J. , Huang, B. , … Klickstein, L. B. (2014). mTOR inhibition improves immune function in the elderly. Science Translational Medicine, 6(268), 268ra179 10.1126/scitranslmed.3009892
    1. Maycox, P. R. , Kelly, F. , Taylor, A. , Bates, S. , Reid, J. , Logendra, R. , … de Belleroche, J. (2009). Analysis of gene expression in two large schizophrenia cohorts identifies multiple changes associated with nerve terminal function. Molecular Psychiatry, 14(12), 1083–1094. 10.1038/mp.2009.18
    1. Moskalev, A. , Chernyagina, E. , de Magalhães, J. P. , Barardo, D. , Thoppil, H. , Shaposhnikov, M. , … Zhavoronkov, A. (2015). : A new, structured and curated database of current therapeutic interventions in aging and age‐related disease. Aging, 7(9), 616–628
    1. Naumova, O. Y. , Palejev, D. , Vlasova, N. V. , Lee, M. , Rychkov, S. Y. , Babich, O. N. , … Grigorenko, E. L. (2012). Age‐related changes of gene expression in the neocortex: Preliminary data on RNA‐Seq of the transcriptome in three functionally distinct cortical areas. Development and Psychopathology, 24(4), 1427–1442. 10.1017/S0954579412000818
    1. Niccoli, T. , & Partridge, L. (2012). Ageing as a risk factor for disease. Current Biology, 22(17), R741–R752. 10.1016/j.cub.2012.07.024
    1. Pearson, K. J. , Baur, J. A. , Lewis, K. N. , Peshkin, L. , Price, N. L. , Labinskyy, N. , … de Cabo, R. (2008). Resveratrol delays age‐related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metabolism, 8(2), 157–168. 10.1016/j.cmet.2008.06.011
    1. Salthouse, T. A. (2009). When does age‐related cognitive decline begin? Neurobiology of Aging, 30(4), 507–514. 10.1016/j.neurobiolaging.2008.09.023
    1. Somel, M. , Guo, S. , Fu, N. , Yan, Z. , Hu, H. Y. , Xu, Y. , … Khaitovich, P. (2010). MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. Genome Research, 20(9), 1207–1218. 10.1101/gr.106849.110
    1. Somel, M. , Khaitovich, P. , Bahn, S. , Pääbo, S. , & Lachmann, M. (2006). Gene expression becomes heterogeneous with age. Current Biology, 16(10), R359–R360. 10.1016/j.cub.2006.04.024
    1. Somel, M. , Liu, X. , Tang, L. , Yan, Z. , Hu, H. , Guo, S. , … Khaitovich, P. (2011). MicroRNA‐driven developmental remodeling in the brain distinguishes humans from other primates. PLoS Biology, 9(12), e1001214 10.1371/journal.pbio.1001214
    1. Strong, R. , Miller, R. A. , Astle, C. M. , Baur, J. A. , De Cabo, R. , Fernandez, E. , … Harrison, D. E. (2013). Evaluation of resveratrol, green tea extract, curcumin, oxaloacetic acid, and medium‐chain triglyceride oil on life span of genetically heterogeneous mice. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 68(1), 6–16. 10.1093/gerona/gls070
    1. Tacutu, R. , Thornton, D. , Johnson, E. , Budovsky, A. , Barardo, D. , Craig, T. , … De Magalhães, J. P. (2018). Human Ageing Genomic Resources: New and updated databases. Nucleic Acids Research, 46(D1), D1083–D1090. 10.1093/nar/gkx1042
    1. Walker, R. , Gurven, M. , Hill, K. , Migliano, A. , Chagnon, N. , De Souza, R. , … Yamauchi, T. (2006). Growth rates and life histories in twenty‐two small‐scale societies. American Journal of Human Biology, 18(3), 295–311. 10.1002/ajhb.20510
    1. Xiao, R. , Zhang, B. , Dong, Y. , Gong, J. , Xu, T. , Liu, J. , & Xu, X. Z. (2013). A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel. Cell, 152(4), 806–817. 10.1016/j.cell.2013.01.020
    1. Xue, H. , Xian, B. , Dong, D. , Xia, K. , Zhu, S. , Zhang, Z. , … Han, J.‐D.‐J. (2007). A modular network model of aging. Molecular Systems Biology, 3(1), 147 10.1038/msb4100189
    1. Ye, X. , Linton, J. M. , Schork, N. J. , Buck, L. B. , & Petrascheck, M. (2014). A pharmacological network for lifespan extension in Caenorhabditis elegans . Aging Cell, 13(2), 206–215. 10.1111/acel.12163
    1. Zhavoronkov, A. , Buzdin, A. A. , Garazha, A. V. , Borisov, N. M. , & Moskalev, A. A. (2014). Signaling pathway cloud regulation for in silico screening and ranking of the potential geroprotective drugs. Frontiers in Genetics, 5, 10.3389/fgene.2014.00049
    1. Ziehm, M. , Kaur, S. , Ivanov, D. K. , Ballester, P. J. , Marcus, D. , Partridge, L. , & Thornton, J. M. (2017). Drug repurposing for aging research using model organisms. Aging Cell, 16(5), 1006–1015. 10.1111/acel.12626

Source: PubMed

3
Abonnere