Virtual Reality, Augmented Reality, Gamification, and Telerehabilitation: Psychological Impact on Orthopedic Patients' Rehabilitation

Alessandra Berton, Umile Giuseppe Longo, Vincenzo Candela, Sara Fioravanti, Lucia Giannone, Valeria Arcangeli, Viviana Alciati, Claudia Berton, Gabriella Facchinetti, Anna Marchetti, Emiliano Schena, Maria Grazia De Marinis, Vincenzo Denaro, Alessandra Berton, Umile Giuseppe Longo, Vincenzo Candela, Sara Fioravanti, Lucia Giannone, Valeria Arcangeli, Viviana Alciati, Claudia Berton, Gabriella Facchinetti, Anna Marchetti, Emiliano Schena, Maria Grazia De Marinis, Vincenzo Denaro

Abstract

Background: Remote virtual rehabilitation aroused growing interest in the last decades, and its role has gained importance following the recent spread of COVID19 pandemic. The advantages of virtual reality (VR), augmented reality (AR), gamification, and telerehabilitation have been demonstrated in several medical fields. In this review, we searched the literature for studies using these technologies for orthopedic rehabilitation and analyzed studies' quality, type and field of rehabilitation, patients' characteristics, and outcomes to describe the state of the art of VR, AR, gamification, and telerehabilitation for orthopedic rehabilitation.

Methods: A comprehensive search on PubMed, Medline, Cochrane, CINAHL, and Embase databases was conducted. This review was performed according to PRISMA guidelines. Studies published between 2015 and 2020 about remote virtual rehabilitations for orthopedic patients were selected. The Methodological Index for Non-Randomized Studies (MINORS) and Cochrane Risk-of-Bias assessment tool were used for quality assessment.

Results: 24 studies (9 randomized controlled trials (RCTs) and 15 non-randomized studies) and 2472 patients were included. Studies mainly concern telerehabilitation (56%), and to a lesser extent VR (28%), AR (28%), and gamification (16%). Remote virtual technologies were used following knee and hip arthroplasty. The majority of included patients were between 40 and 60 years old and had a university degree. Remote virtual rehabilitation was not inferior to face-to-face therapy, and physical improvements were demonstrated by increased clinical scores. Orthopedic virtual remote rehabilitation decreased costs related to transports, hospitalizations, and readmissions.

Conclusion: The heterogeneity of included studies prevented a meta-analysis of their results. Age and social context influence adaptability to technology, and this can modify compliance to treatment and outcomes. A good relationship between patient and physiotherapist is essential for treatment compliance and new technologies are useful to maintain clinical interactions remotely. Remote virtual technologies allow the delivery of high-quality care at reduced costs. This is a necessity given the growing demand for orthopedic rehabilitation and increasing costs related to it. Future studies need to develop specific and objective methods to evaluate the clinical quality of new technologies and definitively demonstrate advantages of VR, AR, gamification, and telerehabilitation compared to face-to face orthopedic rehabilitation.

Keywords: ankle; augmented reality; elbow; femur; foot; gamification; hand; hip; humerus; knee; orthopedic; physiotherapy; rehabilitation; remote rehabilitation; shoulder; spine; telerehabilitation; virtual reality; virtual rehabilitation; wrist.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow chart of studies selection according to PRISMA guidelines [13].

References

    1. Khor W.S., Baker B.G., Amin K., Chan A., Patel K., Wong J. Augmented and virtual reality in surgery—The digital surgical environment: Applications, limitations and legal pitfalls. Ann. Transl. Med. 2016;4:454. doi: 10.21037/atm.2016.12.23.
    1. Eriksson L., Lindström B., Ekenberg L. Patients’ experiences of telerehabilitation at home after shoulder joint replacement. J. Telemed. Telecare. 2011;17:25–30. doi: 10.1258/jtt.2010.100317.
    1. Negrillo-Cárdenas J., Jiménez-Pérez J.-R., Feito F.R. The role of virtual and augmented reality in orthopedic trauma surgery: From diagnosis to rehabilitation. Comput. Methods Programs Biomed. 2020;191:105–407. doi: 10.1016/j.cmpb.2020.105407.
    1. Chan Z.Y.S., MacPhail A.J.C., Au I.P.H., Zhang J.H., Lam B.M.F., Ferber R., Cheung R.T.H. Walking with head-mounted virtual and augmented reality devices: Effects on position control and gait biomechanics. PLoS ONE. 2019;14:e0225972. doi: 10.1371/journal.pone.0225972.
    1. Allam A.A., Kostova Z., Nakamoto K., Schulz P.J., Merolli M., Lindsay S., Rini C. The Effect of social support features and gamification on a web-based intervention for rheumatoid arthritis patients: Randomized controlled Trial. J. Med. Internet Res. 2015;17:e14. doi: 10.2196/jmir.3510.
    1. Kuether J., Moore A., Kahan J., Martucci J., Messina T., Perreault R., Sembler R., Tarutis J., Zazulak B., Rubin L.E., et al. Telerehabilitation for total hip and knee arthroplasty patients: A pilot series with high patient satisfaction. HSS J. 2019;15:221–225. doi: 10.1007/s11420-019-09715-w.
    1. Doiron-Cadrin P., Kairy D., Vendittoli P.-A., Lowry V., Poitras S., Desmeules F. Effects of a tele-prehabilitation program or an in-person prehabilitation program in surgical candidates awaiting total hip or knee arthroplasty: Protocol of a pilot single blind randomized controlled trial. Contemp. Clin. Trials Commun. 2016;4:192–198. doi: 10.1016/j.conctc.2016.10.001.
    1. Then J.W., Shivdas S., Yahaya T.S.T.A., Ab Razak N.I., Choo P.T. Gamification in rehabilitation of metacarpal fracture using cost-effective end-user device: A randomized controlled trial. J. Hand Ther. 2020 doi: 10.1016/j.jht.2020.03.029.
    1. Bernal J.M.P., Martín-Valero R., Barón-López F., García-Gómez O. Effectiveness of telerehabilitation programme following surgery in shoulder impingement syndrome (SIS): Study protocol for a randomized controlled non-inferiority trial. Trials. 2017;18:82. doi: 10.1186/s13063-017-1822-x.
    1. Facchinetti G., D’Angelo D., Piredda M., Petitti T., Matarese M., Oliveti A., De Marinis M.G. Continuity of care interventions for preventing hospital readmission of older people with chronic diseases: A meta-analysis. Int. J. Nurs. Stud. 2019;101:103–396. doi: 10.1016/j.ijnurstu.2019.103396.
    1. Slim K., Nini E., Forestier D., Kwiatkowski F., Panis Y., Chipponi J. Methodological index for non-randomized studies (minors): Development and validation of a new instrument. ANZ J. Surg. 2003;73:712–716. doi: 10.1046/j.1445-2197.2003.02748.x.
    1. Higgins J.P.T., Altman U.G., Gøtzsche P.C., Jüni P., Moher D., Oxman A.D., Savović J., Schulz K.F., Weeks L., Sterne J.A. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. doi: 10.1136/bmj.d5928.
    1. Liberati A., Altman U.G., Tetzlaff J., Mulrow C., Gøtzsche P.C., Ioannidis J.P., Clarke M., Devereaux P., Kleijnen J., Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ. 2009;339:b2700. doi: 10.1136/bmj.b2700.
    1. Valenzuela-Pascual F., Molina F., Corbi F., Blanco J.B., Gil R., Soler-Gonzalez J. The influence of a biopsychosocial educational internet-based intervention on pain, dysfunction, quality of life, and pain cognition in chronic low back pain patients in primary care: A mixed methods approach. BMC Med. Inform. Decis. Mak. 2015;15:97. doi: 10.1186/s12911-015-0220-0.
    1. Van Der Kooij K., Van Dijsseldonk R.B., Van Veen M., Steenbrink F., De Weerd C., Overvliet K.E. Gamification as a sustainable source of enjoyment during balance and gait exercises. Front. Psychol. 2019;10:294. doi: 10.3389/fpsyg.2019.00294.
    1. Kloster M., Babic A. Mobile VR-application for neck exercises. Stud. Health Technol. Inform. 2019;262:206–209.
    1. Chughtai M., Kelly J.J., Newman J.M., Sultan A.A., Khlopas A., Sodhi N., Bhave A., Kolczun M.C., Mont M.A. The role of virtual rehabilitation in total and unicompartmental knee arthroplasty. J. Knee Surg. 2018;32:105–110. doi: 10.1055/s-0038-1637018.
    1. Gianola S., Stucovitz E., Castellini G., Mascali M., Vanni F., Tramacere I., Banfi G., Tornese D. Effects of early virtual reality-based rehabilitation in patients with total knee arthroplasty. Medicine. 2020;99:e19136. doi: 10.1097/MD.0000000000019136.
    1. Matheve T., Bogaerts K., Timmermans A. Virtual reality distraction induces hypoalgesia in patients with chronic low back pain: A randomized controlled trial. J. Neuroeng. Rehabil. 2020;17:12–55. doi: 10.1186/s12984-020-00688-0.
    1. Pekyavas N.O., Ergun N. Comparison of virtual reality exergaming and home exercise programs in patients with subacromial impingement syndrome and scapular dyskinesis: Short term effect. Acta Orthop. Traumatol. Turc. 2017;51:238–242. doi: 10.1016/j.aott.2017.03.008.
    1. Azma K., Rezasoltani Z., Rezaeimoghaddam F., Dadarkhah A., Mohsenolhosseini S. Efficacy of tele-rehabilitation compared with office-based physical therapy in patients with knee osteoarthritis: A randomized clinical trial. J. Telemed. Telecare. 2017;24:560–565. doi: 10.1177/1357633X17723368.
    1. Macías-Hernández S.I., Vásquez-Sotelo D.S., Ferruzca-Navarro M.V., Sánchez S.H.B., Gutiérrez-Martínez J., Núñez-Gaona M.A., Meneses H.A., Velez-Gutiérrez O.B., Tapia-Ferrusco I., Soria-Bastida M.D.L.Á., et al. Proposal and evaluation of a telerehabilitation platform designed for patients with partial rotator cuff tears: A Preliminary Study. Ann. Rehabil. Med. 2016;40:710–717. doi: 10.5535/arm.2016.40.4.710.
    1. Bini S., Mahajan J. Clinical outcomes of remote asynchronous telerehabilitation are equivalent to traditional therapy following total knee arthroplasty: A randomized control study. J. Telemed. Telecare. 2016;23:239–247. doi: 10.1177/1357633X16634518.
    1. Correia F.D., Nogueira A., Magalhães I., Guimarães J., Moreira M., Barradas I., Teixeira L., Tulha J., Seabra R., Lains J., et al. Home-based rehabilitation with a novel digital biofeedback system versus conventional in-person rehabilitation after Total knee replacement: A feasibility study. Sci. Rep. 2018;8:11299. doi: 10.1038/s41598-018-29668-0.
    1. Eichler S., Salzwedel A., Rabe S., Mueller S., Mayer F., Wochatz M., Hadzic M., John M., Wegscheider K., Völler H., et al. The effectiveness of telerehabilitation as a supplement to rehabilitation in patients after total knee or hip replacement: Randomized controlled trial. JMIR Rehabil. Assist. Technol. 2019;6:e14236. doi: 10.2196/14236.
    1. Çubukçu B., Yuzgec U., Zileli R., Zileli A. Reliability and validity analyzes of Kinect V2 based measurement system for shoulder motions. Med. Eng. Phys. 2019;76:20–31. doi: 10.1016/j.medengphy.2019.10.017.
    1. Doiron-Cadrin P., Kairy D., Vendittoli P.-A., Lowry V., Poitras S., Desmeules F. Feasibility and preliminary effects of a tele-prehabilitation program and an in-person prehablitation program compared to usual care for total hip or knee arthroplasty candidates: A pilot randomized controlled trial. Disabil. Rehabil. 2019;42:989–998. doi: 10.1080/09638288.2018.1515992.
    1. Tousignant M., Giguère A.-M., Morin M., Pelletier J., Sheehy A., Cabana F. In-home telerehabilitation for proximal humerus fractures: A pilot study. Int. J. Telerehabil. 2015;6:31–37. doi: 10.5195/IJT.2014.6158.
    1. Nelson M.J., Crossley K.M., Bourke M.G., Russell T.G. Telerehabilitation feasibility in total joint replacement. Int. J. Telerehabil. 2017;9:31–38. doi: 10.5195/IJT.2017.6235.
    1. Chughtai M., Shah N.V., Sultan A.A., Solow M., Tiberi J.V., Mehran N., North T., Moskal J.T., Newman J.M., Samuel L.T., et al. The role of prehabilitation with a telerehabilitation system prior to total knee arthroplasty. Ann. Transl. Med. 2019;7:68. doi: 10.21037/atm.2018.11.27.
    1. Richardson B.R., Truter P., Blumke R., Russell T.G. Physiotherapy assessment and diagnosis of musculoskeletal disorders of the knee via telerehabilitation. J. Telemed. Telecare. 2016;23:88–95. doi: 10.1177/1357633X15627237.
    1. Naeemabadi M., Søndergaard J.H., Klastrup A., Schlünsen A.P., Lauritsen R.E.K., Hansen J., Madsen N.K., Simonsen O., Andersen O.K., Kim K.K., et al. Development of an individualized asynchronous sensor-based telerehabilitation program for patients undergoing total knee replacement: Participatory design. Health Inform. J. 2020:1460458220909779. doi: 10.1177/1460458220909779.
    1. Tsvyakh A.I., Hospodarskyy A.J. Telerehabilitation of Patients with Injuries of the Lower Extremities. Telemed. e-Health. 2017;23:1011–1015. doi: 10.1089/tmj.2016.0267.
    1. Fusco F., Turchetti G. Telerehabilitation after total knee replacement in Italy: Cost-effectiveness and cost-utility analysis of a mixed telerehabilitation-standard rehabilitation programme compared with usual care. BMJ Open. 2016;6:e009964. doi: 10.1136/bmjopen-2015-009964.
    1. Agostini M., Moja L., Banzi R., Pistotti V., Tonin P., Venneri A., Turolla A. Telerehabilitation and recovery of motor function: A systematic review and meta-analysis. J. Telemed. Telecare. 2015;21:202–213. doi: 10.1177/1357633X15572201.
    1. Bernal J.M.P., Martín-Valero R., Barón-López F.J., Estebanez-Pérez M.J., Kairy D., Peterson S. Evidence of benefit of telerehabitation after orthopedic surgery: A systematic review. J. Med. Internet Res. 2017;19:e142. doi: 10.2196/jmir.6836.
    1. Blackwell M., Morgan F., Digioia A.M. Augmented reality and its future in orthopaedics. Clin. Orthop. Relat. Res. 1998;354:111–122. doi: 10.1097/00003086-199809000-00014.
    1. Cabana F., Pagé C., Svotelis A., Langlois-Michaud S., Tousignant M. Is an in-home telerehabilitation program for people with proximal humerus fracture as effective as a conventional face-to face rehabilitation program? A study protocol for a noninferiority randomized clinical trial. BMC Sports Sci. Med. Rehabil. 2016;8:27. doi: 10.1186/s13102-016-0051-z.

Source: PubMed

3
Abonnere