Cerebrospinal fluid and venous biomarkers of shunt-responsive idiopathic normal pressure hydrocephalus: a systematic review and meta-analysis

Santhosh G Thavarajasingam, Mahmoud El-Khatib, Kalyan V Vemulapalli, Hector A Sinzinkayo Iradukunda, Joshua Laleye, Salvatore Russo, Christian Eichhorn, Per K Eide, Santhosh G Thavarajasingam, Mahmoud El-Khatib, Kalyan V Vemulapalli, Hector A Sinzinkayo Iradukunda, Joshua Laleye, Salvatore Russo, Christian Eichhorn, Per K Eide

Abstract

Background: Idiopathic normal pressure hydrocephalus (iNPH) is a neurodegenerative disease and dementia subtype involving disturbed cerebrospinal fluid (CSF) homeostasis. Patients with iNPH may improve clinically following CSF diversion through shunt surgery, but it remains a challenge to predict which patients respond to shunting. It has been proposed that CSF and blood biomarkers may be used to predict shunt response in iNPH.

Objective: To conduct a systematic review and meta-analysis to identify which CSF and venous biomarkers predict shunt-responsive iNPH most accurately.

Methods: Original studies that investigate the use of CSF and venous biomarkers to predict shunt response were searched using the following databases: Embase, MEDLINE, Scopus, PubMed, Google Scholar, and JSTOR. Included studies were assessed using the ROBINS-I tool, and eligible studies were evaluated utilising univariate meta-analyses.

Results: The study included 13 studies; seven addressed lumbar CSF levels of amyloid-β 1-42, nine studies CSF levels of Total-Tau, six studies CSF levels of Phosphorylated-Tau, and seven studies miscellaneous biomarkers, proteomics, and genotyping. A meta-analysis of six eligible studies conducted for amyloid-β 1-42, Total-Tau, and Phosphorylated-Tau demonstrated significantly increased lumbar CSF Phosphorylated-Tau (- 0.55 SMD, p = 0.04) and Total-Tau (- 0.50 SMD, p = 0.02) in shunt-non-responsive iNPH, though no differences were seen between shunt responders and non-responders for amyloid-β 1-42 (- 0.26 SMD, p = 0.55) or the other included biomarkers.

Conclusion: This meta-analysis found that lumbar CSF levels of Phosphorylated-Tau and Total-Tau are significantly increased in shunt non-responsive iNPH compared to shunt-responsive iNPH. The other biomarkers, including amyloid-β 1-42, did not significantly differentiate shunt-responsive from shunt-non-responsive iNPH. More studies on the Tau proteins examining sensitivity and specificity at different cut-off levels are needed for a robust analysis of the diagnostic efficiency of the Tau proteins.

Keywords: Biomarker; Diagnosis; Normal pressure hydrocephalus; Predict; Shunt response; Tau; iNPH.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart outlining the study selection process
Fig. 2
Fig. 2
A risk of bias summary plot for non-randomised studies with bar chart of the distribution of risk-of-bias judgements for all included studies (n = 13) [1, 4, 15, 33, 39, 51, 52, 58, 60, 65, 70, 73, 74] across the domains of the ROBINS-I tool, shown in percentages (%) is shown. In the bottom, an overall risk of bias, which represents the collated risk-of-bias judgements for all domains, is depicted
Fig. 3
Fig. 3
A A funnel plot is shown, which plots every study included in the meta-analysis (n = 14; 6 original studies but used and counted multiple times due to reporting on multiple biomarkers) [4, 33, 51, 70, 73, 74], particularly their observed effect sizes (standard mean difference) on the x-axis against a measure of their standard error on the y-axis. B An Egger’s asymmetry test funnel plot of all data points included in the meta-analysis (n = 14; 6 original studies but used and counted multiple times due to reporting on multiple biomarkers indicating presence and degree of publication bias is shown). p-value < 0.05 is deemed significant and implicates publication bias. Egger’s asymmetry test yielded p = 0.0989, calculated running an Egger’s regression (see Egger’s regression line) on the collated logDOR and standard errors of all data used in the meta-analysis (n = 14)
Fig. 4
Fig. 4
A forest plot indicating and visualising the effect size in standard mean difference (SMD) of amyloid-β 1–42 levels in lumbar CSF samples of shunt responder (S-R) versus shunt non-responder (S-NR) iNPH patients is shown (n = 4 studies) [4, 33, 51, 74]. The size of the grey square of the SMD visual correlates to study sample size, and the straight line indicated the confidence interval. The diamond at the bottom indicates the overall pooled effect. The red bar below it indicates the prediction interval. Heterogeneity is indicated by the chi-squared statistic (I2) with associated p-value. The 95% confidence intervals (CI) are shown in squared bracket ([]). Furthermore, for every study, the following are displayed: author, total number of S-R and their respective mean level and standard deviation (SD) of amyloid-β 1–42 lumbar CSF levels, as well as the respective values for S-NR, weighting of each study in percentage (%). There was no significant difference in amyloid-β 1–42 between S-R and S-NR groups
Fig. 5
Fig. 5
A forest plot indicating and visualising the effect size in standard mean difference (SMD) of Phosphorylated-Tau (P-Tau) levels in lumbar CSF samples of shunt responder (S-R) versus shunt non-responder (S-NR) iNPH patients is shown (n = 4 studies) [4, 33, 51, 74]. The size of the grey square of the SMD visual correlates to study sample size, and the straight line indicated the confidence interval. The diamond at the bottom indicates the overall pooled effect. The red bar below it indicates the prediction interval. Heterogeneity is indicated by the chi-squared statistic (I2) with associated p-value. The 95% confidence intervals (CI) are shown in squared bracket ([]). Furthermore, for every study, the following are displayed: author, total number of S-R and their respective mean level and standard deviation (SD) of P-Tau lumbar CSF levels, as well as the respective values for S-NR, weighting of each study in percentage (%). There was a significantly higher level of P-Tau in the S-NR group compared to the S-R group
Fig. 6
Fig. 6
A forest plot indicating and visualising the effect size in standard mean difference (SMD) of Total-Tau (T-Tau) levels in lumbar (n = 5) [4, 33, 51, 73, 74] and ventricular (n = 1, Tarnaris et al. (2011) [70] samples of shunt responder (S-R) versus shunt non-responder (S-NR) iNPH patients is shown (n = 6 studies) [4, 33, 51, 70, 73, 74]. The size of the grey square of the SMD visual correlates to study sample size, and the straight line indicated the confidence interval. The diamond at the bottom indicates the overall pooled effect. The red bar below it indicates the prediction interval. Heterogeneity is indicated by the chi-squared statistic (I2) with associated p-value. The 95% confidence intervals (CI) are shown in squared bracket ([]). Furthermore, for every study, the following are displayed: author, total number of S-R, and their respective mean level and standard deviation (SD) of T-Tau lumbar CSF levels, as well as the respective values for S-NR, weighting of each study in percentage. There was a significantly higher level of T-Tau in the S-NR group compared to the S-R group
Fig. 7
Fig. 7
An albatross plot indicating and visualising the effect size as standard mean difference (SMD) of neurofilament light (NFL), sulfatide, and Total-Tau (T-Tau)/amyloid-β 1–42 (aβ 1–42) ratio levels in lumbar CSF samples of shunt responder (S-R) versus shunt non-responder (S-NR) iNPH patients is shown, relative to p-value on the x-axis and the sample size on the y-axis (n = 4 studies). Three differently drawn lines indicate different SMD levels as outlined in the box. Each biomarker has its own-coloured dot as shown in the box. Each dot represents a single study for the respective biomarker. Studies included for NFL: Ågren-Wilsson et al. (2007) [4], Tullberg et al. (2008) [73]. Studies included for Sulfatide: Ågren-Wilsson et al. (2007) [4], Tullberg et al. (2008) [73]. Studies included for T-Tau/ amyloid-β 1–42: Craven et al. (2017) [15], Hong et al. (2018) [33]. All markers are increased in the S-R group compared to S-NR group, but the difference is not statistically significant

References

    1. Abu Hamdeh S, Virhammar J, Sehlin D, Alafuzoff I, Cesarini KG, Marklund N. Brain tissue Aβ42 levels are linked to shunt response in idiopathic normal pressure hydrocephalus. J Neurosurg. 2018;130(1):121–129. doi: 10.3171/2017.7.JNS171005.
    1. Adams RD, Fisher CM, Hakim S, Ojemann RG, Sweet WH. Symptomatic occult hydrocephalus with “normal” cerebrospinal fluid pressure. A treatable syndrome. N Engl J Med. 1965;273:117–126. doi: 10.1056/NEJM196507152730301.
    1. Agerskov S, Wallin M, Hellstrom P, Ziegelitz D, Wikkelso C, Tullberg M. Absence of disproportionately enlarged subarachnoid space hydrocephalus, a sharp callosal angle, or other morphologic mri markers should not be used to exclude patients with idiopathic normal pressure hydrocephalus from shunt surgery. AJNR Am J Neuroradiol. 2019;40(1):74–79. doi: 10.3174/ajnr.A5910.
    1. Ågren-Wilsson A, Lekman A, Sjöberg W, Rosengren L, Blennow K, Bergenheim AT, Malm J. CSF biomarkers in the evaluation of idiopathic normal pressure hydrocephalus. Acta Neurol Scand. 2007;116(5):333–339. doi: 10.1111/j.1600-0404.2007.00890.x.
    1. Andersson J, Rosell M, Kockum K, Lilja-Lund O, Söderström L, Laurell K (2019) Prevalence of idiopathic normal pressure hydrocephalus: A prospective, population-based study. PloS one 14(5):e0217705.
    1. Andreasen N, Hesse C, Davidsson P, Minthon L, Wallin A, Winblad B, Vanderstichele H, Vanmechelen E, Blennow K. Cerebrospinal fluid beta-Amyloid(1–42) in Alzheimer disease: differences between early- and late-onset Alzheimer disease and stability during the course of disease. Arch Neurol. 1999;56(6):673–680. doi: 10.1001/archneur.56.6.673.
    1. Bech-Azeddine R, Høgh P, Juhler M, Gjerris F, Waldemar G. Idiopathic normal-pressure hydrocephalus: clinical comorbidity correlated with cerebral biopsy findings and outcome of cerebrospinal fluid shunting. J Neurol Neurosurg Psychiatry. 2007;78(2):157–161. doi: 10.1136/jnnp.2006.095117.
    1. Bech RA, Waldemar G, Gjerris F, Klinken L, Juhler M. Shunting effects in patients with idiopathic normal pressure hydrocephalus; correlation with cerebral and leptomeningeal biopsy findings. Acta Neurochir (Wien) 1999;141(6):633–639. doi: 10.1007/s007010050353.
    1. Bekris LM, Yu CE, Bird TD, Tsuang DW. Genetics of Alzheimer disease. J Geriatr Psychiatry Neurol. 2010;23(4):213–227. doi: 10.1177/0891988710383571.
    1. Brean A, Eide PK. Prevalence of probable idiopathic normal pressure hydrocephalus in a Norwegian population. Acta Neurol Scand. 2008;118(1):48–53. doi: 10.1111/j.1600-0404.2007.00982.x.
    1. Cheng H, Wang M, Li JL, Cairns NJ, Han X. Specific changes of sulfatide levels in individuals with pre-clinical Alzheimer’s disease: an early event in disease pathogenesis. J Neurochem. 2013;127(6):733–738. doi: 10.1111/jnc.12368.
    1. Chen Z, Liu C, Zhang J, Relkin N, Xing Y, Li Y. Cerebrospinal fluid Aβ42, t-tau, and p-tau levels in the differential diagnosis of idiopathic normal-pressure hydrocephalus: a systematic review and meta-analysis. Fluids Barriers CNS. 2017;14(1):13. doi: 10.1186/s12987-017-0062-5.
    1. Cochrane (2021) Handbook for systematic reviews of interventions. . Accessed September 7 2021
    1. Covidence (2020) Covidence - Better systematic review management. Available from: . Accessed October 1 2021
    1. Craven CL, Baudracco I, Zetterberg H, Lunn MPT, Chapman MD, Lakdawala N, Watkins LD, Toma AK. The predictive value of T-tau and AB1-42 levels in idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien) 2017;159(12):2293–2300. doi: 10.1007/s00701-017-3314-x.
    1. Czosnyka Z, Czosnyka M. Long-term monitoring of intracranial pressure in normal pressure hydrocephalus and other CSF disorders. Acta Neurochir (Wien) 2017;159(10):1979–1980. doi: 10.1007/s00701-017-3282-1.
    1. Delgado M, Ganea D. Vasoactive intestinal peptide: a neuropeptide with pleiotropic immune functions. Amino Acids. 2013;45(1):25–39. doi: 10.1007/s00726-011-1184-8.
    1. Eckhardt M. The role and metabolism of sulfatide in the nervous system. Mol Neurobiol. 2008;37(2–3):93–103. doi: 10.1007/s12035-008-8022-3.
    1. Eide PK, Brean A. Intracranial pulse pressure amplitude levels determined during preoperative assessment of subjects with possible idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien) 2006;148(11):1151–1156. doi: 10.1007/s00701-006-0896-0.
    1. Eide PK. Cardiac output in idiopathic normal pressure hydrocephalus: association with arterial blood pressure and intracranial pressure wave amplitudes and outcome of shunt surgery. Fluids Barriers CNS. 2011;8(1):11. doi: 10.1186/2045-8118-8-11.
    1. Eide PK. Intracranial pressure parameters in idiopathic normal pressure hydrocephalus patients treated with ventriculo-peritoneal shunts. Acta Neurochir (Wien) 2006;148(1):21–29. doi: 10.1007/s00701-005-0654-8.
    1. Eide PK, Park EH, Madsen JR. Arterial blood pressure vs intracranial pressure in normal pressure hydrocephalus. Acta Neurol Scand. 2010;122(4):262–269. doi: 10.1111/j.1600-0404.2009.01304.x.
    1. Eide PK, Pripp AH, Ringstad G (2020) Magnetic resonance imaging biomarkers of cerebrospinal fluid tracer dynamics in idiopathic normal pressure hydrocephalus. Brain Commun 2(2):fcaa187.
    1. Eide PK, Sorteberg W. Diagnostic intracranial pressure monitoring and surgical management in idiopathic normal pressure hydrocephalus: a 6-year review of 214 patients. Neurosurgery. 2010;66(1):80–91. doi: 10.1227/01.NEU.0000363408.69856.B8.
    1. Eide PK, Stanisic M. Cerebral microdialysis and intracranial pressure monitoring in patients with idiopathic normal-pressure hydrocephalus: association with clinical response to extended lumbar drainage and shunt surgery. J Neurosurg. 2010;112(2):414–424. doi: 10.3171/2009.5.JNS09122.
    1. Fleiss JL. The statistical basis of meta-analysis. Stat Methods Med Res. 1993;2(2):121–145. doi: 10.1177/096228029300200202.
    1. Giordan E, Palandri G, Lanzino G, Murad MH, Elder BD (2018) Outcomes and complications of different surgical treatments for idiopathic normal pressure hydrocephalus: a systematic review and meta-analysis. J Neurosurg 1–13
    1. Golomb J, Wisoff J, Miller DC, Boksay I, Kluger A, Weiner H, Salton J, Graves W. Alzheimer’s disease comorbidity in normal pressure hydrocephalus: prevalence and shunt response. J Neurol Neurosurg Psychiatry. 2000;68(6):778–781. doi: 10.1136/jnnp.68.6.778.
    1. Hamilton R, Patel S, Lee EB, Jackson EM, Lopinto J, Arnold SE, Clark CM, Basil A, Shaw LM, Xie SX, Grady MS, Trojanowski JQ. Lack of shunt response in suspected idiopathic normal pressure hydrocephalus with Alzheimer disease pathology. Ann Neurol. 2010;68(4):535–540. doi: 10.1002/ana.22015.
    1. Hartung J, Knapp G. A refined method for the meta-analysis of controlled clinical trials with binary outcome. Stat Med. 2001;20(24):3875–3889. doi: 10.1002/sim.1009.
    1. Hebb AO, Cusimano MD. Idiopathic normal pressure hydrocephalus: a systematic review of diagnosis and outcome. Neurosurgery. 2001;49(5):1166–1186.
    1. Hellström P, Klinge P, Tans J, Wikkelsø C. A new scale for assessment of severity and outcome in iNPH. Acta Neurol Scand. 2012;126(4):229–237. doi: 10.1111/j.1600-0404.2012.01677.x.
    1. Hong YJ, Kim MJ, Jeong E, Kim JE, Hwang J, Lee JI, Lee JH, Na DL. Preoperative biomarkers in patients with idiopathic normal pressure hydrocephalus showing a favorable shunt surgery outcome. J Neurol Sci. 2018;387:21–26. doi: 10.1016/j.jns.2018.01.017.
    1. Howick J, Chalmers I, Glaziou P, Greenhalgh T, Heneghan C, Liberati A, Moschetti I, Phillips B, Thornton H, Goddard O, Hodgkinson M (2011) The Oxford 2011 Levels of Evidence. Accessed September 7 2021
    1. Ishikawa M, Hashimoto M, Kuwana N, Mori E, Miyake H, Wachi A, Takeuchi T, Kazui H, Koyama H. Guidelines for management of idiopathic normal pressure hydrocephalus. Neurol Med Chir (Tokyo) 2008;48(Suppl):S1–23. doi: 10.2176/nmc.48.S1.
    1. Jaraj D, Rabiei K, Marlow T, Jensen C, Skoog I, Wikkelsø C. Prevalence of idiopathic normal-pressure hydrocephalus. Neurology. 2014;82(16):1449–1454. doi: 10.1212/WNL.0000000000000342.
    1. Jeppsson A, Zetterberg H, Blennow K, Wikkelsø C. Idiopathic normal-pressure hydrocephalus: pathophysiology and diagnosis by CSF biomarkers. Neurology. 2013;80(15):1385–1392. doi: 10.1212/WNL.0b013e31828c2fda.
    1. Jingami N, Asada-Utsugi M, Uemura K, Noto R, Takahashi M, Ozaki A, Kihara T, Kageyama T, Takahashi R, Shimohama S, Kinoshita A. Idiopathic normal pressure hydrocephalus has a different cerebrospinal fluid biomarker profile from Alzheimer’s disease. J Alzheimers Dis. 2015;45(1):109–115. doi: 10.3233/JAD-142622.
    1. Johansson BB, Wikkelsø C, Blomstrand C, Linder L, Fahrenkrug J. Vasoactive intestinal polypeptide in cerebrospinal fluid of patients with dementia. Nord Psykiatr Tidsskr. 1985;39(sup11):69–73. doi: 10.3109/08039488509101960.
    1. Klein C, Westenberger A (2012) Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med 2(1):a008888
    1. Klinge P, Hellström P, Tans J, Wikkelsø C (2012) European iNPH Multicentre Study Group. One-year outcome in the European multicentre study on iNPH. Acta Neurol Scand 126(3):145–153
    1. Leinonen V, Koivisto AM, Savolainen S, Rummukainen J, Tamminen JN, Tillgren T, Vainikka S, Pyykkö OT, Mölsä J, Fraunberg M, Pirttilä T, Jääskeläinen JE, Soininen H, Rinne J, Alafuzoff I. Amyloid and tau proteins in cortical brain biopsy and Alzheimer’s disease. Ann Neurol. 2010;68(4):446–453. doi: 10.1002/ana.22100.
    1. Lei P, Ayton S, Finkelstein DI, Adlard PA, Masters CL, Bush AI. Tau protein: relevance to Parkinson’s disease. Int J Biochem Cell Biol. 2010;42(11):1775–1778. doi: 10.1016/j.biocel.2010.07.016.
    1. Libard S, Alafuzoff I. Alzheimer’s disease neuropathological change and loss of matrix/neuropil in patients with idiopathic Normal Pressure Hydrocephalus, a model of Alzheimer’s disease. Acta Neuropathol Commun. 2019;7(1):98. doi: 10.1186/s40478-019-0748-9.
    1. Lolansen SD, Rostgaard N, Oernbo EK, Juhler M, Simonsen AH, MacAulay N. Inflammatory markers in cerebrospinal fluid from patients with hydrocephalus: a systematic literature review. Dis Markers. 2021;2021:8834822. doi: 10.1155/2021/8834822.
    1. Luikku AJ, Hall A, Nerg O, Koivisto AM, Hiltunen M, Helisalmi S, Herukka SK, Junkkari A, Sutela A, Kojoukhova M, Korhonen V, Mattila J, Lötjönen J, Rummukainen J, Alafuzoff I, Jääskeläinen JE, Remes AM, Solomon A, Kivipelto M, Soininen H, Rauramaa T, Leinonen V. Predicting development of Alzheimer’s disease in patients with shunted idiopathic normal pressure hydrocephalus. J Alzheimers Dis. 2019;71(4):1233–1243. doi: 10.3233/JAD-190334.
    1. Malm J, Graff-Radford NR, Ishikawa M, Kristensen B, Leinonen V, Mori E, Owler BK, Tullberg M, Williams MA, Relkin NR (2013) Influence of comorbidities in idiopathic normal pressure hydrocephalus - research and clinical care. A report of the ISHCSF task force on comorbidities in INPH. Fluids Barriers CNS 10(1):22
    1. Manniche C, Hejl AM, Hasselbalch SG, Simonsen AH. Cerebrospinal fluid biomarkers in idiopathic normal pressure hydrocephalus versus Alzheimer’s disease and subcortical ischemic vascular disease: a systematic review. J Alzheimers Dis. 2019;68(1):267–279. doi: 10.3233/JAD-180816.
    1. Marmarou A, Bergsneider M, Klinge P, Relkin N, Black PM. The value of supplemental prognostic tests for the preoperative assessment of idiopathic normal-pressure hydrocephalus. Neurosurgery. 2005;57(3 Suppl):S17–v.
    1. Marmarou A, Young HF, Aygok GA, Sawauchi S, Tsuji O, Yamamoto T, Dunbar J. Diagnosis and management of idiopathic normal-pressure hydrocephalus: a prospective study in 151 patients. J Neurosurg. 2005;102(6):987–997. doi: 10.3171/jns.2005.102.6.0987.
    1. Migliorati K, Panciani PP, Pertichetti M, Borroni B, Archetti S, Rozzini L, Padovani A, Terzi L, Bruscella S, Fontanella MM. P-Tau as prognostic marker in long term follow up for patients with shunted iNPH. Neurol Res. 2021;43(1):78–85. doi: 10.1080/01616412.2020.1831300.
    1. Minta K, Jeppsson A, Brinkmalm G, Portelius E, Zetterberg H, Blennow K, Tullberg M, Andreasson U. Lumbar and ventricular CSF concentrations of extracellular matrix proteins before and after shunt surgery in idiopathic normal pressure hydrocephalus. Fluids Barriers CNS. 2021;18(1):23. doi: 10.1186/s12987-021-00256-1.
    1. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097
    1. Mostile G, Portaro G, Certo F, Luca A, Manna R, Terranova R, Altieri R, Nicoletti A, Barbagallo GMV, Zappia M (2021) iNPH with parkinsonism: response to lumbar CSF drainage and ventriculoperitoneal shunting. 268(4):1254–1265
    1. Nadel JL, Wilkinson DA, Linzey JR, Maher CO, Kotagal V, Heth JA. Thirty-day hospital readmission and surgical complication rates for shunting in normal pressure hydrocephalus: a large national database analysis. Neurosurgery. 2020;86(6):843–850. doi: 10.1093/neuros/nyz299.
    1. Nakajima M, Yamada S, Miyajima M, Ishii K, Kuriyama N, Kazui H, Kanemoto H, Suehiro T, Yoshiyama K, Kameda M, Kajimoto Y, Mase M, Murai H, Kita D, Kimura T, Samejima N, Tokuda T, Kaijima M, Akiba C, Kawamura K, Atsuchi M, Hirata Y, Matsumae M, Sasaki M, Yamashita F, Aoki S, Irie R, Miyake H, Kato T, Mori E, Ishikawa M, Date I, Arai H, research committee of idiopathic normal pressure hydrocephalus Guidelines for Management of Idiopathic Normal Pressure Hydrocephalus (Third Edition): endorsed by the Japanese Society of Normal Pressure Hydrocephalus. Neurol Med Chir (Tokyo) 2021;61(2):63–97. doi: 10.2176/nmc.st.2020-0292.
    1. Nedergaard M, Goldman SA. Glymphatic failure as a final common pathway to dementia. Science. 2020;370(6512):50–56. doi: 10.1126/science.abb8739.
    1. Patel S, Lee EB, Xie SX, Law A, Jackson EM, Arnold SE, Clark CM, Shaw LM, Grady MS, Trojanowski JQ, Hamilton RH. Phosphorylated tau/amyloid beta 1–42 ratio in ventricular cerebrospinal fluid reflects outcome in idiopathic normal pressure hydrocephalus. Fluids Barriers CNS. 2012;9(1):7. doi: 10.1186/2045-8118-9-7.
    1. Pfanner T, Henri-Bhargava A, Borchert S. Cerebrospinal fluid biomarkers as predictors of shunt response in idiopathic normal pressure hydrocephalus: a systematic review. Can J Neurol Sci. 2018;45(1):3–10. doi: 10.1017/cjn.2017.251.
    1. Pyykkö OT, Helisalmi S, Koivisto AM, Mölsä JA, Rummukainen J, Nerg O, Alafuzoff I, Savolainen S, Soininen H, Jääskeläinen JE, Rinne J, Leinonen V, Hiltunen M. APOE4 predicts amyloid-β in cortical brain biopsy but not idiopathic normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry. 2012;83(11):1119–1124. doi: 10.1136/jnnp-2011-303849.
    1. R Core Team (2020) R: A language and environment for statistical R foundation for statistical computing, Vienna, Austria. Accessed October 16, 2021. Accessed October 16, 2021
    1. Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery. 2005;57(3 Suppl):S4–v.
    1. Ringstad G, Vatnehol SAS, Eide PK. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain. 2017;140(10):2691–2705. doi: 10.1093/brain/awx191.
    1. Schwarzer, G (2020) &nbsp;Package ‘meta’. The Comprehensive R Archive Network Accessed September 7 2021
    1. Scollato A, Terreni A, Caldini A, Salvadori B, Gallina P, Francese S, Mastrobuoni G, Pieraccini G, Moneti G, Bini L, Messeri G, Di Lorenzo N. CSF proteomic analysis in patients with normal pressure hydrocephalus selected for the shunt: CSF biomarkers of response to surgical treatment. Neurol Sci. 2010;31(3):283–291. doi: 10.1007/s10072-009-0181-0.
    1. Serada S, Fujimoto M, Ogata A, Terabe F, Hirano T, Iijima H, Shinzaki S, Nishikawa T, Ohkawara T, Iwahori K, Ohguro N, Kishimoto T, Naka T. iTRAQ-based proteomic identification of leucine-rich alpha-2 glycoprotein as a novel inflammatory biomarker in autoimmune diseases. Ann Rheum Dis. 2010;69(4):770–774. doi: 10.1136/ard.2009.118919.
    1. Shprecher D, Schwalb J, Kurlan R. Normal pressure hydrocephalus: diagnosis and treatment. Curr Neurol Neurosci Rep. 2008;8(5):371–376. doi: 10.1007/s11910-008-0058-2.
    1. StataCorp. Stata Statistical Software: Release 17. College Station, TX: StataCorp LLC; 2021.
    1. Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, Henry D, Altman DG, Ansari MT, Boutron I, Carpenter JR, Chan AW, Churchill R, Deeks JJ, Hróbjartsson A, Kirkham J, Jüni P, Loke YK, Pigott TD, Ramsay CR, Regidor D, Rothstein HR, Sandhu L, Santaguida PL, Schünemann HJ, Shea B, Shrier I, Tugwell P, Turner L, Valentine JC, Waddington H, Waters E, Wells GA, Whiting PF, Higgins JP (2016) ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 355:i4919
    1. Tarnaris A, Toma AK, Chapman MD, Keir G, Kitchen ND, Watkins LD. Use of cerebrospinal fluid amyloid-β and total tau protein to predict favorable surgical outcomes in patients with idiopathic normal pressure hydrocephalus. J Neurosurg. 2011;115(1):145–150. doi: 10.3171/2011.2.JNS101316.
    1. Thavarajasingam SG, El-Khatib M, Rea M, Russo S, Lemcke J, Al-Nusair L, Vajkoczy P. Clinical predictors of shunt response in the diagnosis and treatment of idiopathic normal pressure hydrocephalus: a systematic review and meta-analysis. Acta Neurochir (Wien) 2021;163(10):2641–2672. doi: 10.1007/s00701-021-04922-z.
    1. Toma AK, Papadopoulos MC, Stapleton S, Kitchen ND, Watkins LD. Systematic review of the outcome of shunt surgery in idiopathic normal-pressure hydrocephalus. Acta Neurochir (Wien) 2013;155(10):1977–1980. doi: 10.1007/s00701-013-1835-5.
    1. Tullberg M, Blennow K, Månsson JE, Fredman P, Tisell M, Wikkelsö C. Cerebrospinal fluid markers before and after shunting in patients with secondary and idiopathic normal pressure hydrocephalus. Cerebrospinal Fluid Res. 2008;5:9. doi: 10.1186/1743-8454-5-9.
    1. Vanninen A, Nakajima M, Miyajima M, Rauramaa T, Kokki M, Musialowicz T, Mäkinen PM, Herukka SK, Koivisto AM, Jääskeläinen JE, Hiltunen M, Leinonen V. Elevated CSF LRG and decreased Alzheimer’s disease biomarkers in idiopathic normal pressure hydrocephalus J. Clin Med. 2021;10(5):1105.
    1. Virhammar J, Laurell K, Cesarini KG, Larsson EM. The callosal angle measured on MRI as a predictor of outcome in idiopathic normal-pressure hydrocephalus. J Neurosurg. 2014;120(1):178–184. doi: 10.3171/2013.8.JNS13575.
    1. Wechsler D. WAIS-R : Wechsler Adult Intelligence Scale-Revised. New York: Psychological Corporation; 1981.
    1. Wikkelsø C, Hellstrom P, Klinge PM, Tans JT. The European iNPH Multicentre Study on the predictive values of resistance to CSF outflow and the CSF Tap Test in patients with idiopathic normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry. 2013;84(5):562–568. doi: 10.1136/jnnp-2012-303314.

Source: PubMed

3
Abonnere