Cerebrospinal Fluid Biomarkers in iNPH: A Narrative Review

Efstratios-Stylianos Pyrgelis, Fotini Boufidou, Vasilios C Constantinides, Myrto Papaioannou, Sokratis G Papageorgiou, Leonidas Stefanis, George P Paraskevas, Elisabeth Kapaki, Efstratios-Stylianos Pyrgelis, Fotini Boufidou, Vasilios C Constantinides, Myrto Papaioannou, Sokratis G Papageorgiou, Leonidas Stefanis, George P Paraskevas, Elisabeth Kapaki

Abstract

Idiopathic normal pressure hydrocephalus (iNPH) is a neurological syndrome characterized by the clinical triad of gait disorder, cognitive impairment and urinary incontinence. It has attracted interest because of the possible reversibility of symptoms, especially with timely treatment. The main pathophysiological theory is based on a vicious circle of disruption in circulation of cerebrospinal fluid (CSF) that leads to the deceleration of its absorption. Data regarding CSF biomarkers in iNPH are contradictory and no definite CSF biomarker profile has been recognized as in Alzheimer's disease (AD), which often co-exists with iNPH. In this narrative review, we investigated the literature regarding CSF biomarkers in iNPH, both the established biomarkers total tau protein (t-tau), phosphorylated tau protein (p-tau) and amyloid peptide with 42 amino acids (Aβ42), and other molecules, which are being investigated as emerging biomarkers. The majority of studies demonstrate differences in CSF concentrations of Aβ42 and tau-proteins (t-tau and p-tau) among iNPH patients, healthy individuals and patients with AD and vascular dementia. iNPH patients present with lower CSF Aβ42 and p-tau concentrations than healthy individuals and lower t-tau and p-tau concentrations than AD patients. This could prove helpful for improving diagnosis, differential diagnosis and possibly prognosis of iNPH patients.

Keywords: Alzheimer’s disease; beta amyloid; biomarkers; cerebrospinal fluid; normal pressure hydrocephalus; tau proteins; vascular dementia.

Conflict of interest statement

G.P.P. received fees from Biogen International as a consultant of the advisory board. The other authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

References

    1. Rekate H.L. A contemporary definition and classification of hydrocephalus. Semin. Pediatr. Neurol. 2009;16:9–15. doi: 10.1016/j.spen.2009.01.002.
    1. Leinonen V., Vanninen R., Rauramaa T. Cerebrospinal fluid circulation and hydrocephalus. Handb. Clin. Neurol. 2017;145:39–50. doi: 10.1016/B978-0-12-802395-2.00005-5.
    1. Ransohoff J., Shulman K., Fishman R.A. Hydrocephalus: A review of etiology and treatment. J. Pediatr. 1960;56:399–411. doi: 10.1016/S0022-3476(60)80193-X.
    1. Oliveira L.M., Nitrini R., Roman G.C. Normal-pressure hydrocephalus: A critical review. Dement. Neuropsychol. 2019;13:133–143. doi: 10.1590/1980-57642018dn13-020001.
    1. Skalicky P., Mladek A., Vlasak A., De Lacy P., Benes V., Bradac O. Normal pressure hydrocephalus-an overview of pathophysiological mechanisms and diagnostic procedures. Neurosurg. Rev. 2020;43:1451–1464. doi: 10.1007/s10143-019-01201-5.
    1. Adams R.D., Fisher C.M., Hakim S., Ojemann R.G., Sweet W.H. Symptomatic occult hydrocephalus with normal cerebrospinal-fluid pressure: A treatable syndrome. N. Engl. J. Med. 1965;273:117–126. doi: 10.1056/NEJM196507152730301.
    1. Hakim S., Adams R.D. The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J. Neurol. Sci. 1965;2:307–327. doi: 10.1016/0022-510X(65)90016-X.
    1. Damasceno B.P. Neuroimaging in normal pressure hydrocephalus. Dement. Neuropsychol. 2015;9:350–355. doi: 10.1590/1980-57642015DN94000350.
    1. Kockum K., Lilja-Lund O., Larsson E.M., Rosell M., Soderstrom L., Virhammar J., Laurell K. The idiopathic normal-pressure hydrocephalus Radscale: A radiological scale for structured evaluation. Eur. J. Neurol. 2018;25:569–576. doi: 10.1111/ene.13555.
    1. Pyrgelis E.S., Paraskevas G.P., Constantinides V.C., Boufidou F., Velonakis G., Stefanis L., Kapaki E. Callosal Angle Sub-Score of the Radscale in Patients with Idiopathic Normal Pressure Hydrocephalus Is Associated with Positive Tap Test Response. J. Clin. Med. 2022;11:2898. doi: 10.3390/jcm11102898.
    1. Relkin N., Marmarou A., Klinge P., Bergsneider M., Black P.M. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery. 2005;57:S4–S16. doi: 10.1227/01.NEU.0000168185.29659.C5.
    1. Kockum K., Larsson E.-M., Lilja-Lund O., Rosell M., Söderström L., Virhammar J., Laurell K. The NPH radscale; a new radiological scale for evaluation of suspected normal pressure hydrocephalus. Fluids Barriers CNS. 2015;12:P27. doi: 10.1186/2045-8118-12-S1-P27.
    1. Capone P.M., Bertelson J.A., Ajtai B. Neuroimaging of Normal Pressure Hydrocephalus and Hydrocephalus. Neurol. Clin. 2020;38:171–183. doi: 10.1016/j.ncl.2019.09.003.
    1. Mori E., Ishikawa M., Kato T., Kazui H., Miyake H., Miyajima M., Nakajima M., Hashimoto M., Kuriyama N., Tokuda T., et al. Guidelines for management of idiopathic normal pressure hydrocephalus: Second edition. Neurol. Med. Chir. 2012;52:775–809. doi: 10.2176/nmc.52.775.
    1. Bradley W.G. Normal pressure hydrocephalus: New concepts on etiology and diagnosis. AJNR. Am. J. Neuroradiol. 2000;21:1586–1590.
    1. Ammar A., Abbas F., Al Issawi W., Fakhro F., Batarfi L., Hendam A., Hasen M., El Shawarby M., Al Jehani H. Idiopathic Normal-Pressure Hydrocephalus Syndrome: Is It Understood? The Comprehensive Idiopathic Normal-Pressure Hydrocephalus Theory (CiNPHT) In: Ammar A., editor. Hydrocephalus: What Do We Know? And What Do We Still Not Know? Springer International Publishing; Cham, Switzerland: 2017. pp. 67–82.
    1. Mihalj M., Dolic K., Kolic K., Ledenko V. CSF tap test—Obsolete or appropriate test for predicting shunt responsiveness? A systemic review. J. Neurol. Sci. 2016;362:78–84. doi: 10.1016/j.jns.2016.01.028.
    1. Krauss J.K., Regel J.P., Vach W., Droste D.W., Borremans J.J., Mergner T. Vascular risk factors and arteriosclerotic disease in idiopathic normal-pressure hydrocephalus of the elderly. Stroke. 1996;27:24–29. doi: 10.1161/01.STR.27.1.24.
    1. Graff-Radford N.R., Knopman D.S., Penman A.D., Coker L.H., Mosley T.H. Do systolic BP and pulse pressure relate to ventricular enlargement? Eur. J. Neurol. 2013;20:720–724. doi: 10.1111/ene.12067.
    1. Hooglugt A., Klatt O., Huveneers S. Vascular stiffening and endothelial dysfunction in atherosclerosis. Curr. Opin. Lipidol. 2022;33:353–363. doi: 10.1097/MOL.0000000000000852.
    1. Kitagaki H., Mori E., Ishii K., Yamaji S., Hirono N., Imamura T. CSF spaces in idiopathic normal pressure hydrocephalus: Morphology and volumetry. AJNR. Am. J. Neuroradiol. 1998;19:1277–1284.
    1. Siraj S. An overview of normal pressure hydrocephalus and its importance: How much do we really know? J. Am. Med. Dir. Assoc. 2011;12:19–21. doi: 10.1016/j.jamda.2010.05.005.
    1. Silverberg G.D., Mayo M., Saul T., Rubenstein E., McGuire D. Alzheimer’s disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: A hypothesis. Lancet. Neurol. 2003;2:506–511. doi: 10.1016/S1474-4422(03)00487-3.
    1. Silverberg G.D., Mayo M., Saul T., Fellmann J., Carvalho J., McGuire D. Continuous CSF drainage in AD: Results of a double-blind, randomized, placebo-controlled study. Neurology. 2008;71:202–209. doi: 10.1212/01.wnl.0000316197.04157.6f.
    1. Del Bigio M.R., Cardoso E.R., Halliday W.C. Neuropathological changes in chronic adult hydrocephalus: Cortical biopsies and autopsy findings. Can. J. Neurol. Sci. 1997;24:121–126. doi: 10.1017/S0317167100021442.
    1. Savolainen S., Paljarvi L., Vapalahti M. Prevalence of Alzheimer’s disease in patients investigated for presumed normal pressure hydrocephalus: A clinical and neuropathological study. Acta Neurochir. 1999;141:849–853. doi: 10.1007/s007010050386.
    1. Golomb J., Wisoff J., Miller D.C., Boksay I., Kluger A., Weiner H., Salton J., Graves W. Alzheimer’s disease comorbidity in normal pressure hydrocephalus: Prevalence and shunt response. J. Neurol. Neurosurg. Psychiatry. 2000;68:778–781. doi: 10.1136/jnnp.68.6.778.
    1. Bech-Azeddine R., Hogh P., Juhler M., Gjerris F., Waldemar G. Idiopathic normal-pressure hydrocephalus: Clinical comorbidity correlated with cerebral biopsy findings and outcome of cerebrospinal fluid shunting. J. Neurol. Neurosurg. Psychiatry. 2007;78:157–161. doi: 10.1136/jnnp.2006.095117.
    1. Leinonen V., Alafuzoff I., Aalto S., Suotunen T., Savolainen S., Nagren K., Tapiola T., Pirttila T., Rinne J., Jaaskelainen J.E., et al. Assessment of beta-amyloid in a frontal cortical brain biopsy specimen and by positron emission tomography with carbon 11-labeled Pittsburgh Compound B. Arch. Neurol. 2008;65:1304–1309. doi: 10.1001/archneur.65.10.noc80013.
    1. Biscetti L., Salvadori N., Farotti L., Cataldi S., Eusebi P., Paciotti S., Parnetti L. The added value of Abeta42/Abeta40 in the CSF signature for routine diagnostics of Alzheimer’s disease. Clin. Chim. Acta Int. J. Clin. Chem. 2019;494:71–73. doi: 10.1016/j.cca.2019.03.001.
    1. Blennow K., Hampel H. CSF markers for incipient Alzheimer’s disease. Lancet. Neurol. 2003;2:605–613. doi: 10.1016/S1474-4422(03)00530-1.
    1. van Harten A.C., Kester M.I., Visser P.J., Blankenstein M.A., Pijnenburg Y.A., van der Flier W.M., Scheltens P. Tau and p-tau as CSF biomarkers in dementia: A meta-analysis. Clin. Chem. Lab. Med. 2011;49:353–366. doi: 10.1515/CCLM.2011.086.
    1. Murphy M.P., LeVine H., 3rd Alzheimer’s disease and the amyloid-beta peptide. J. Alzheimer’s Dis. JAD. 2010;19:311–323. doi: 10.3233/JAD-2010-1221.
    1. Kudo T., Mima T., Hashimoto R., Nakao K., Morihara T., Tanimukai H., Tsujio I., Koike Y., Tagami S., Mori H., et al. Tau protein is a potential biological marker for normal pressure hydrocephalus. Psychiatry Clin. Neurosci. 2000;54:199–202. doi: 10.1046/j.1440-1819.2000.00658.x.
    1. Lins H., Wichart I., Bancher C., Wallesch C.W., Jellinger K.A., Rosler N. Immunoreactivities of amyloid beta peptide((1-42)) and total tau protein in lumbar cerebrospinal fluid of patients with normal pressure hydrocephalus. J. Neural Transm. 2004;111:273–280. doi: 10.1007/s00702-003-0075-x.
    1. Kapaki E.N., Paraskevas G.P., Tzerakis N.G., Sfagos C., Seretis A., Kararizou E., Vassilopoulos D. Cerebrospinal fluid tau, phospho-tau181 and beta-amyloid1-42 in idiopathic normal pressure hydrocephalus: A discrimination from Alzheimer’s disease. Eur. J. Neurol. 2007;14:168–173. doi: 10.1111/j.1468-1331.2006.01593.x.
    1. Agren-Wilsson A., Lekman A., Sjoberg W., Rosengren L., Blennow K., Bergenheim A.T., Malm J. CSF biomarkers in the evaluation of idiopathic normal pressure hydrocephalus. Acta Neurol. Scand. 2007;116:333–339. doi: 10.1111/j.1600-0404.2007.00890.x.
    1. Ray B., Reyes P.F., Lahiri D.K. Biochemical studies in Normal Pressure Hydrocephalus (NPH) patients: Change in CSF levels of amyloid precursor protein (APP), amyloid-beta (Abeta) peptide and phospho-tau. J. Psychiatr. Res. 2011;45:539–547. doi: 10.1016/j.jpsychires.2010.07.011.
    1. Jeppsson A., Zetterberg H., Blennow K., Wikkelso C. Idiopathic normal-pressure hydrocephalus: Pathophysiology and diagnosis by CSF biomarkers. Neurology. 2013;80:1385–1392. doi: 10.1212/WNL.0b013e31828c2fda.
    1. Miyajima M., Nakajima M., Ogino I., Miyata H., Motoi Y., Arai H. Soluble amyloid precursor protein alpha in the cerebrospinal fluid as a diagnostic and prognostic biomarker for idiopathic normal pressure hydrocephalus. Eur. J. Neurol. 2013;20:236–242. doi: 10.1111/j.1468-1331.2012.03781.x.
    1. Tsai A., Malek-Ahmadi M., Kahlon V., Sabbagh M.N. Differences in Cerebrospinal Fluid Biomarkers between Clinically Diagnosed Idiopathic Normal Pressure Hydrocephalus and Alzheimer’s Disease. J. Alzheimer’s Dis. Park. 2014;4:1000150. doi: 10.4172/2161-0460.1000150.
    1. Schirinzi T., Sancesario G.M., Ialongo C., Imbriani P., Madeo G., Toniolo S., Martorana A., Pisani A. A clinical and biochemical analysis in the differential diagnosis of idiopathic normal pressure hydrocephalus. Front. Neurol. 2015;6:86. doi: 10.3389/fneur.2015.00086.
    1. Santangelo R., Cecchetti G., Bernasconi M.P., Cardamone R., Barbieri A., Pinto P., Passerini G., Scomazzoni F., Comi G., Magnani G. Cerebrospinal Fluid Amyloid-beta 42, Total Tau and Phosphorylated Tau are Low in Patients with Normal Pressure Hydrocephalus: Analogies and Differences with Alzheimer’s Disease. J. Alzheimer’s Dis. JAD. 2017;60:183–200. doi: 10.3233/JAD-170186.
    1. Jeppsson A., Wikkelso C., Blennow K., Zetterberg H., Constantinescu R., Remes A.M., Herukka S.K., Rauramaa T., Nagga K., Leinonen V., et al. CSF biomarkers distinguish idiopathic normal pressure hydrocephalus from its mimics. J. Neurol. Neurosurg. Psychiatry. 2019;90:1117–1123. doi: 10.1136/jnnp-2019-320826.
    1. Taghdiri F., Gumus M., Algarni M., Fasano A., Tang-Wai D., Tartaglia M.C. Association Between Cerebrospinal Fluid Biomarkers and Age-related Brain Changes in Patients with Normal Pressure Hydrocephalus. Sci. Rep. 2020;10:9106. doi: 10.1038/s41598-020-66154-y.
    1. Akiba C., Nakajima M., Miyajima M., Ogino I., Motoi Y., Kawamura K., Adachi S., Kondo A., Sugano H., Tokuda T., et al. Change of Amyloid-beta 1-42 Toxic Conformer Ratio After Cerebrospinal Fluid Diversion Predicts Long-Term Cognitive Outcome in Patients with Idiopathic Normal Pressure Hydrocephalus. J. Alzheimer’s Dis. JAD. 2018;63:989–1002. doi: 10.3233/JAD-180059.
    1. Manniche C., Simonsen A.H., Hasselbalch S.G., Andreasson U., Zetterberg H., Blennow K., Hogh P., Juhler M., Hejl A.M. Cerebrospinal Fluid Biomarkers to Differentiate Idiopathic Normal Pressure Hydrocephalus from Subcortical Ischemic Vascular Disease. J. Alzheimer’s Dis. JAD. 2020;75:937–947. doi: 10.3233/JAD-200036.
    1. Said H.M., Kaya D., Yavuz I., Dost F.S., Altun Z.S., Isik A.T. A Comparison of Cerebrospinal Fluid Beta-Amyloid and Tau in Idiopathic Normal Pressure Hydrocephalus and Neurodegenerative Dementias. Clin. Interv. Aging. 2022;17:467–477. doi: 10.2147/CIA.S360736.
    1. Mazzeo S., Emiliani F., Bagnoli S., Padiglioni S., Del Re L.M., Giacomucci G., Balestrini J., Ingannato A., Moschini V., Morinelli C., et al. Alzheimer’s Disease CSF Biomarker Profiles in Idiopathic Normal Pressure Hydrocephalus. J. Pers. Med. 2022;12:935. doi: 10.3390/jpm12060935.
    1. Jeppsson A., Bjerke M., Hellstrom P., Blennow K., Zetterberg H., Kettunen P., Wikkelso C., Wallin A., Tullberg M. Shared CSF Biomarker Profile in Idiopathic Normal Pressure Hydrocephalus and Subcortical Small Vessel Disease. Front. Neurol. 2022;13:839307. doi: 10.3389/fneur.2022.839307.
    1. Jingami N., Asada-Utsugi M., Uemura K., Noto R., Takahashi M., Ozaki A., Kihara T., Kageyama T., Takahashi R., Shimohama S., et al. Idiopathic normal pressure hydrocephalus has a different cerebrospinal fluid biomarker profile from Alzheimer's disease. J. Alzheimer'sDis. JAD. 2015;45:109–115. doi: 10.3233/JAD-142622.
    1. Hoffman P.N., Cleveland D.W., Griffin J.W., Landes P.W., Cowan N.J., Price D.L. Neurofilament gene expression: A major determinant of axonal caliber. Proc. Natl. Acad. Sci. USA. 1987;84:3472–3476. doi: 10.1073/pnas.84.10.3472.
    1. Gaetani L., Blennow K., Calabresi P., Di Filippo M., Parnetti L., Zetterberg H. Neurofilament light chain as a biomarker in neurological disorders. J. Neurol. Neurosurg. Psychiatry. 2019;90:870–881. doi: 10.1136/jnnp-2018-320106.
    1. Pyykko O.T., Lumela M., Rummukainen J., Nerg O., Seppala T.T., Herukka S.K., Koivisto A.M., Alafuzoff I., Puli L., Savolainen S., et al. Cerebrospinal fluid biomarker and brain biopsy findings in idiopathic normal pressure hydrocephalus. PLoS ONE. 2014;9:e91974. doi: 10.1371/journal.pone.0091974.
    1. Tullberg M., Blennow K., Mansson J.E., Fredman P., Tisell M., Wikkelso C. Cerebrospinal fluid markers before and after shunting in patients with secondary and idiopathic normal pressure hydrocephalus. Cereb. Fluid Res. 2008;5:9. doi: 10.1186/1743-8454-5-9.
    1. Tullberg M., Blennow K., Mansson J.E., Fredman P., Tisell M., Wikkelso C. Ventricular cerebrospinal fluid neurofilament protein levels decrease in parallel with white matter pathology after shunt surgery in normal pressure hydrocephalus. Eur. J. Neurol. 2007;14:248–254. doi: 10.1111/j.1468-1331.2006.01553.x.
    1. Tullberg M., Rosengren L., Blomsterwall E., Karlsson J.E., Wikkelso C. CSF neurofilament and glial fibrillary acidic protein in normal pressure hydrocephalus. Neurology. 1998;50:1122–1127. doi: 10.1212/WNL.50.4.1122.
    1. Jeppsson A., Holtta M., Zetterberg H., Blennow K., Wikkelso C., Tullberg M. Amyloid mis-metabolism in idiopathic normal pressure hydrocephalus. Fluids Barriers CNS. 2016;13:13. doi: 10.1186/s12987-016-0037-y.
    1. Eng L.F., Ghirnikar R.S., Lee Y.L. Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000) Neurochem. Res. 2000;25:1439–1451. doi: 10.1023/A:1007677003387.
    1. Albrechtsen M., Sorensen P.S., Gjerris F., Bock E. High cerebrospinal fluid concentration of glial fibrillary acidic protein (GFAP) in patients with normal pressure hydrocephalus. J. Neurol. Sci. 1985;70:269–274. doi: 10.1016/0022-510X(85)90168-6.
    1. Tullberg M., Mansson J.E., Fredman P., Lekman A., Blennow K., Ekman R., Rosengren L.E., Tisell M., Wikkelso C. CSF sulfatide distinguishes between normal pressure hydrocephalus and subcortical arteriosclerotic encephalopathy. J. Neurol. Neurosurg. Psychiatry. 2000;69:74–81. doi: 10.1136/jnnp.69.1.74.
    1. Li X., Miyajima M., Jiang C., Arai H. Expression of TGF-betas and TGF-beta type II receptor in cerebrospinal fluid of patients with idiopathic normal pressure hydrocephalus. Neurosci. Lett. 2007;413:141–144. doi: 10.1016/j.neulet.2006.11.039.
    1. Sosvorova L., Mohapl M., Vcelak J., Hill M., Vitku J., Hampl R. The impact of selected cytokines in the follow-up of normal pressure hydrocephalus. Physiol. Res. 2015;64:S283–S290. doi: 10.33549/physiolres.933069.
    1. Nakajima M., Miyajima M., Ogino I., Watanabe M., Miyata H., Karagiozov K.L., Arai H., Hagiwara Y., Segawa T., Kobayashi K., et al. Leucine-rich alpha-2-glycoprotein is a marker for idiopathic normal pressure hydrocephalus. Acta Neurochir. 2011;153:1339–1346; discussion 1346. doi: 10.1007/s00701-011-0963-z.
    1. Nakajima M., Arai H., Miyajima M. Diagnostic value of CSF biomarker profile in idiopathic normal pressure hydrocephalus; leucine-rich alpha-2-glycoprotein is a potential biological marker. Rinsho Shinkeigaku = Clin. Neurol. 2010;50:973–976. doi: 10.5692/clinicalneurol.50.973.
    1. Li X., Miyajima M., Mineki R., Taka H., Murayama K., Arai H. Analysis of potential diagnostic biomarkers in cerebrospinal fluid of idiopathic normal pressure hydrocephalus by proteomics. Acta Neurochir. 2006;148:859–864; discussion 864. doi: 10.1007/s00701-006-0787-4.
    1. Mase M., Yamada K., Shimazu N., Seiki K., Oda H., Nakau H., Inui T., Li W., Eguchi N., Urade Y. Lipocalin-type prostaglandin D synthase (beta-trace) in cerebrospinal fluid: A useful marker for the diagnosis of normal pressure hydrocephalus. Neurosci. Res. 2003;47:455–459. doi: 10.1016/j.neures.2003.08.009.
    1. Brettschneider J., Riepe M.W., Petereit H.F., Ludolph A.C., Tumani H. Meningeal derived cerebrospinal fluid proteins in different forms of dementia: Is a meningopathy involved in normal pressure hydrocephalus? J. Neurol. Neurosurg. Psychiatry. 2004;75:1614–1616. doi: 10.1136/jnnp.2003.026013.
    1. Omlin F.X., Webster H.D., Palkovits C.G., Cohen S.R. Immunocytochemical localization of basic protein in major dense line regions of central and peripheral myelin. J. Cell Biol. 1982;95:242–248. doi: 10.1083/jcb.95.1.242.
    1. Selhub J., Miller J.W. The pathogenesis of homocysteinemia: Interruption of the coordinate regulation by S-adenosylmethionine of the remethylation and transsulfuration of homocysteine. Am. J. Clin. Nutr. 1992;55:131–138. doi: 10.1093/ajcn/55.1.131.
    1. Sosvorova L., Bestak J., Bicikova M., Mohapl M., Hill M., Kubatova J., Hampl R. Determination of homocysteine in cerebrospinal fluid as an indicator for surgery treatment in patients with hydrocefalus. Physiol. Res. 2014;63:521–527. doi: 10.33549/physiolres.932650.
    1. Frischknecht R., Chang K.J., Rasband M.N., Seidenbecher C.I. Neural ECM molecules in axonal and synaptic homeostatic plasticity. Prog. Brain Res. 2014;214:81–100. doi: 10.1016/B978-0-444-63486-3.00004-9.
    1. Minta K., Jeppsson A., Brinkmalm G., Portelius E., Zetterberg H., Blennow K., Tullberg M., Andreasson U. Lumbar and ventricular CSF concentrations of extracellular matrix proteins before and after shunt surgery in idiopathic normal pressure hydrocephalus. Fluids Barriers CNS. 2021;18:23. doi: 10.1186/s12987-021-00256-1.
    1. Simoes G., Pereira T., Caseiro A. Matrix metaloproteinases in vascular pathology. Microvasc. Res. 2022;143:104398. doi: 10.1016/j.mvr.2022.104398.
    1. Minta K., Brinkmalm G., Al Nimer F., Thelin E.P., Piehl F., Tullberg M., Jeppsson A., Portelius E., Zetterberg H., Blennow K., et al. Dynamics of cerebrospinal fluid concentrations of matrix metalloproteinases in human traumatic brain injury. Sci. Rep. 2020;10:18075. doi: 10.1038/s41598-020-75233-z.
    1. Sharma M., Khan S., Rahman S., Singh L.R. The Extracellular Protein, Transthyretin Is an Oxidative Stress Biomarker. Front. Physiol. 2019;10:5. doi: 10.3389/fphys.2019.00005.
    1. Gloeckner S.F., Meyne F., Wagner F., Heinemann U., Krasnianski A., Meissner B., Zerr I. Quantitative analysis of transthyretin, tau and amyloid-beta in patients with dementia. J. Alzheimer’s Dis. JAD. 2008;14:17–25. doi: 10.3233/JAD-2008-14102.
    1. Futakawa S., Nara K., Miyajima M., Kuno A., Ito H., Kaji H., Shirotani K., Honda T., Tohyama Y., Hoshi K., et al. A unique N-glycan on human transferrin in CSF: A possible biomarker for iNPH. Neurobiol. Aging. 2012;33:1807–1815. doi: 10.1016/j.neurobiolaging.2011.02.023.
    1. Nagata Y., Hirayama A., Ikeda S., Shirahata A., Shoji F., Maruyama M., Kayano M., Bundo M., Hattori K., Yoshida S., et al. Comparative analysis of cerebrospinal fluid metabolites in Alzheimer’s disease and idiopathic normal pressure hydrocephalus in a Japanese cohort. Biomark. Res. 2018;6:5. doi: 10.1186/s40364-018-0119-x.
    1. Nakajima M., Rauramaa T., Makinen P.M., Hiltunen M., Herukka S.K., Kokki M., Musialowicz T., Jyrkkanen H.K., Danner N., Junkkari A., et al. Protein tyrosine phosphatase receptor type Q in cerebrospinal fluid reflects ependymal cell dysfunction and is a potential biomarker for adult chronic hydrocephalus. Eur. J. Neurol. 2021;28:389–400. doi: 10.1111/ene.14575.
    1. Nagata Y., Bundo M., Sugiura S., Kamita M., Ono M., Hattori K., Yoshida S., Goto Y.I., Urakami K., Niida S. PTPRQ as a potential biomarker for idiopathic normal pressure hydrocephalus. Mol. Med. Rep. 2017;16:3034–3040. doi: 10.3892/mmr.2017.7015.
    1. Graff-Radford N.R., Jones D.T. Normal Pressure Hydrocephalus. Contin. Lifelong Learn. Neurol. 2019;25:165–186. doi: 10.1212/CON.0000000000000689.
    1. Lim T.S., Choi J.Y., Park S.A., Youn Y.C., Lee H.Y., Kim B.G., Joo I.S., Huh K., Moon S.Y. Evaluation of coexistence of Alzheimer’s disease in idiopathic normal pressure hydrocephalus using ELISA analyses for CSF biomarkers. BMC Neurol. 2014;14:66. doi: 10.1186/1471-2377-14-66.
    1. Muller-Schmitz K., Krasavina-Loka N., Yardimci T., Lipka T., Kolman A.G.J., Robbers S., Menge T., Kujovic M., Seitz R.J. Normal Pressure Hydrocephalus Associated with Alzheimer’s Disease. Ann. Neurol. 2020;88:703–711. doi: 10.1002/ana.25847.
    1. Thavarajasingam S.G., El-Khatib M., Vemulapalli K.V., Iradukunda H.A.S., Laleye J., Russo S., Eichhorn C., Eide P.K. Cerebrospinal fluid and venous biomarkers of shunt-responsive idiopathic normal pressure hydrocephalus: A systematic review and meta-analysis. Acta Neurochir. 2022;164:1719–1746. doi: 10.1007/s00701-022-05154-5.
    1. Darrow J.A., Lewis A., Gulyani S., Khingelova K., Rao A., Wang J., Zhang Y., Luciano M., Yasar S., Moghekar A. CSF Biomarkers Predict Gait Outcomes in Idiopathic Normal Pressure Hydrocephalus. Neurol. Clin. Pract. 2022;12:91–101. doi: 10.1212/CPJ.0000000000001156.
    1. Chen C.P.C., Huang Y.C., Chang C.N., Chen J.L., Hsu C.C., Lin W.Y. Changes of cerebrospinal fluid protein concentrations and gait patterns in geriatric normal pressure hydrocephalus patients after ventriculoperitoneal shunting surgery. Exp. Gerontol. 2018;106:109–115. doi: 10.1016/j.exger.2018.01.027.
    1. Scollato A., Terreni A., Caldini A., Salvadori B., Gallina P., Francese S., Mastrobuoni G., Pieraccini G., Moneti G., Bini L., et al. CSF proteomic analysis in patients with normal pressure hydrocephalus selected for the shunt: CSF biomarkers of response to surgical treatment. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2010;31:283–291. doi: 10.1007/s10072-009-0181-0.
    1. Kang K., Ko P.W., Jin M., Suk K., Lee H.W. Idiopathic normal-pressure hydrocephalus, cerebrospinal fluid biomarkers, and the cerebrospinal fluid tap test. J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas. 2014;21:1398–1403. doi: 10.1016/j.jocn.2013.11.039.
    1. Manniche C., Hejl A.M., Hasselbalch S.G., Simonsen A.H. Cerebrospinal Fluid Biomarkers in Idiopathic Normal Pressure Hydrocephalus versus Alzheimer’s Disease and Subcortical Ischemic Vascular Disease: A Systematic Review. J. Alzheimer’s Dis. JAD. 2019;68:267–279. doi: 10.3233/JAD-180816.
    1. Blennow K., de Leon M.J., Zetterberg H. Alzheimer’s disease. Lancet. 2006;368:387–403. doi: 10.1016/S0140-6736(06)69113-7.
    1. Kapaki E., Paraskevas G.P., Papageorgiou S.G., Bonakis A., Kalfakis N., Zalonis I., Vassilopoulos D. Diagnostic value of CSF biomarker profile in frontotemporal lobar degeneration. Alzheimer Dis. Assoc. Disord. 2008;22:47–53. doi: 10.1097/WAD.0b013e3181610fea.
    1. Paraskevas G.P., Kapaki E., Papageorgiou S.G., Kalfakis N., Andreadou E., Zalonis I., Vassilopoulos D. CSF biomarker profile and diagnostic value in vascular dementia. Eur. J. Neurol. 2009;16:205–211. doi: 10.1111/j.1468-1331.2008.02387.x.
    1. Lewczuk P., Riederer P., O’Bryant S.E., Verbeek M.M., Dubois B., Visser P.J., Jellinger K.A., Engelborghs S., Ramirez A., Parnetti L., et al. Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: An update of the Consensus of the Task Force on Biological Markers in Psychiatry of the World Federation of Societies of Biological Psychiatry. World J. Biol. Psychiatry Off. J. World Fed. Soc. Biol. Psychiatry. 2018;19:244–328. doi: 10.1080/15622975.2017.1375556.
    1. Paraskevas G.P., Bougea A., Constantinides V.C., Bourbouli M., Petropoulou O., Kapaki E. In vivo Prevalence of Alzheimer Biomarkers in Dementia with Lewy Bodies. Dement. Geriatr. Cogn. Disord. 2019;47:289–296. doi: 10.1159/000500567.
    1. Kokkinou M., Beishon L.C., Smailagic N., Noel-Storr A.H., Hyde C., Ukoumunne O., Worrall R.E., Hayen A., Desai M., Ashok A.H., et al. Plasma and cerebrospinal fluid ABeta42 for the differential diagnosis of Alzheimer’s disease dementia in participants diagnosed with any dementia subtype in a specialist care setting. Cochrane Database Syst. Rev. 2021;2:CD010945. doi: 10.1002/14651858.CD010945.
    1. Jack C.R., Jr., Bennett D.A., Blennow K., Carrillo M.C., Feldman H.H., Frisoni G.B., Hampel H., Jagust W.J., Johnson K.A., Knopman D.S., et al. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87:539–547. doi: 10.1212/WNL.0000000000002923.
    1. Wallin A., Kapaki E., Boban M., Engelborghs S., Hermann D.M., Huisa B., Jonsson M., Kramberger M.G., Lossi L., Malojcic B., et al. Biochemical markers in vascular cognitive impairment associated with subcortical small vessel disease—A consensus report. BMC Neurol. 2017;17:102. doi: 10.1186/s12883-017-0877-3.
    1. Jack C.R., Jr., Bennett D.A., Blennow K., Carrillo M.C., Dunn B., Haeberlein S.B., Holtzman D.M., Jagust W., Jessen F., Karlawish J., et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2018;14:535–562. doi: 10.1016/j.jalz.2018.02.018.

Source: PubMed

3
Abonnere